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Preface

How can we think of causation in policy research? Almost any research tradition
provides a different answer. For instance, emphasis can be placed either on the pro-
cess leading to a policy outcome or on its underlying conditions. A process can be
either observable or unobservable, and the underlying relevant conditions can be
understood as single factors or complex configurations. Either samples, popula-
tions, or single cases can be invoked as the proper empirical ground for grasping
them. Evidence can be arranged to either claim relevance or irrelevance. These dif-
ferences reflect as many distinct assumptions about the shape of causation and build
as many research strategies.

Causality in Policy Studies equips researchers to meet two related challenges in
the field. First, algorithms for data analysis embed selected assumptions about
causation that often remain unspoken. Knowing these assumptions is crucial to
understanding how algorithms can be appropriately employed and eventually com-
bined to compensate for their blind spots and weaknesses. Second, policy research
is carried out within various disciplines (such as political science, sociology, eco-
nomics, management, and administration), each often married to particular tradi-
tions. The book addresses the technical drive of such differentiation. In doing so, it
provides the opportunity for researchers of any stripe to familiarize themselves with
the strategies on which other streams build their claims.

In short, the book shows how to learn from different causal techniques, apply
them consciously, and possibly make them speak to each other to get a better sense
of findings. For this purpose, it structures the journey into causal knowledge in three
stages. First, it introduces the foundational issues of causation (Chaps. 1 and 2).
Then, it exposes the inner working of selected techniques for causal analysis (Chaps.
3,4,5,6,7,8and 9). Last, it considers some incompatibilities and complementari-
ties among techniques to improve causal knowledge (Chaps. 10 and 11).

The red thread connecting all chapters is a reasonable realist stance. All share the
tenets that causation is factual and entails generative and transfer processes unfold-
ing at different levels of reality. Moreover, the chapters agree that causation can be
known. Hypothetical statements about its manifestations, direction, and conditions
can be given a testable shape. They also agree that causal statements should be
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believed when logically and empirically compelling. The book’s commitment to
methodological pluralism follows from these tenets. The complexity of causal phe-
nomena is such that no single technique can grasp its entirety. Still, each technique
can illuminate particular facets in response to a precise research question. Indeed,
asking whether a factor can yield one outcome differs from asking how it happens
or under which conditions it obtains, and each response calls for adequate analytic
tools. When pieced together, these responses can offer a better account of the phe-
nomena of interest.

Methodological pluralism can deliver on the promise of better knowledge if the
strengths and weaknesses of each technique are understood and tackled. To this end,
each substantive chapter clarifies the research question a technique can answer, the
research design and data treatment the technique requires for credible results, and
the domain of validity of its findings. Wherever possible, a replicable example illus-
trates the deployment of the analysis as the sequence of operations and actual deci-
sions. Of course, this selection of techniques is far from exhaustive of the
methodological variety of policy studies. Nevertheless, this suite provides sharp
insight into the different strategies to establish the tenability of a causal statement.
As such, it can offer guidance beyond the boundaries of this book.

The edited format of the book aims at providing highly usable and solid knowl-
edge for policy assessment and evaluation to MA students, PhD students, scholars,
and practitioners in policy-related fields. Thus, each chapter is authored by a recog-
nized scholar from different backgrounds, generations, and perspectives. Such a
diverse yet “close-knit” team is essential to the volume. A single author could hardly
have covered such a range of techniques with comparable expertise.

Public policies are tools and governance systems to tackle collective problems.
Good policies call for a generation of open-minded scholars and practitioners will-
ing to understand and learn from research conducted in different fields and capable
of handling the techniques in their toolbox consciously and carefully. We hope you
will have a good time going through the chapters. Enjoy your journey!

MILANO, Milano, Italy Alessia Damonte
Fedra Negri
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Chapter 1

Introduction: The Elephant of Causation
and the Blind Sages

Alessia Damonte and Fedra Negri

It was six men of Indostan, To learning much inclined, Who
went to see the Elephant (Though all of them were blind), That
each by observation Might satisfy his mind. John G. Saxe
(1816-1887).

Abstract What does a policy outcome hinge on? The response is vital to policy-
making and calls for the best of our knowledge from a variety of disciplines—from
economics to sociology and from political science to public administration and
management. The response entails a stance about causation, however, and almost
every discipline has its own. Researchers are like the blind sages who had never
come across the elephant of causation before and who develop their idea of the
elephant by “touching” a different part of it. Which part of the elephant will you
happen to touch? Will you be able to listen to and understand what the other sages
will tell you?

1.1 Policy Decisions and Causal Theories

The common wisdom about public policy understands them as governments’ deci-
sions to tackle a collective problem. These decisions deploy rules, information,
taxes, and expenditures to get “people to do things that they might not otherwise do”
or “do things that they might not have done otherwise” (Schneider & Ingram, 1990:
513). By inducing a change in people’s willingness and capacity to “do things,”
policy-makers expect the problem to disappear or, at least, take a more bear-
able shape.

A. Damonte (D<)
University of Milan, Milan, Italy
e-mail: alessia.damonte @unimi.it

F. Negri
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Thus, the kernel of policy decisions is the causal theory that they encapsulate:
first, of the behavior at the root of the collective problem; second and relatedly, of
the capacity that certain tools have to make such behavior change for the better. The
theory connects outcomes to behavior and then identifies the “carrots, sticks, and
sermons” (Vedung, 2010) best suited to put or keep such behavior on a desirable
track. For example, in their fight against cancer, governments can address smoking
as a proven causal factor and assume people smoke if they have the wrong informa-
tion or are shortsighted about the consequences of their behavior—else, they would
reasonably quit. Governments can fund education campaigns to convey the right
information, require tobacco products to carry warning labels, or disallow tobacco
advertising and sponsorship. Moreover, to compensate for people’s shortsighted-
ness, they can levy “sin taxes” upon tobacco products to make prices a better signal
of the hidden costs of smoking or enforce smoke bans that protect non-smokers.
Whether a government applies none, one, or a mix of these tools, in turn, depends
on policy-makers; whether their decisions reach the addressees properly, instead, is
an administrative and a governance matter (e.g., McConnell, 2010). Regardless of
the point of attack, the issue of policy success and failure inevitably appeals to
causal theories on endowments, concerns, constraints, and incentives accounting for
behavior (e.g., Ostrom, 2005).

Policy studies offer exemplary illustrations of the twofold stake of causal theo-
ries. First, these theories allow us to make sense of the world. Our bewilderment at
some diversity in performance dissolves when we are offered satisfying accounts of
relevant behaviors. Second, these theories have straightforward practical implica-
tions for individual and collective strategies. If we know which factors compel an
event and suppress it, we can change the event’s odds by controlling these factors.
Then, the driving question remains: how can we get to know these factors well
enough to build decisions on them?

1.2 The Elephant of Causation

Across the philosophy of science and social sciences, the responses to this question
invite analogies with the blind sages in Saxe’s poem (1872), who “prate about an
Elephant that / Not one of them has seen.”! Indeed, actual causation is the complex
local production of an outcome and it is hard to identify before it unfolds. The
usable knowledge of a causal process pinpoints the key factors of its unfolding that
allow us to see it coming in the next instance and, eventually, change its odds (e.g.,
Craver and Kaplan, 2020). Such knowledge requires criteria to identify the key

'The poem tells the story of a group of blind sages who have never come across an elephant before
and who learn what the elephant is like by touching it. Each blind sage feels a different part of the
elephant’s body, but only one part. They then describe the elephant based on their limited experi-
ence and “Though each was partly in the right, /And all were in the wrong!” (Saxe, 1872).
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causal factors beyond the single case and credibly so. Historically, guidelines for
identifying the key causal factors developed along two lines.

1.2.1 Elephants by the Principle

The most enduring guideline for determining the key causal factors before a process
unfolds has come from the Aristotelian philosophy of science. There, causation was
tracked back to four kinds of principles, known as “material,” “formal,” “efficient,”
and “final.” The first two principles capture the structural features of a causal pro-
cess, namely, its constituent elements and the shape of their arrangement. The latter
two refer to agency and locate the key factors in outer stimuli or the drive from inner
purposes (e.g., Moravcsik, 1974). The original “doctrine” maintained that adequate
responses to any why-question appealed to all the four principles together.

Indeed, convincing accounts still locate actual causation in the interplay of struc-
ture and agency, as influential mechanistic perspectives make clear (e.g., Little,
2011; Craver, 2006). More often, current research streams specialize in single prin-
ciples. For example, the causal role of “material” ascriptive features is a driving
concern of gender and minority studies. The generative power of formal arrange-
ments is the core tenet of, for instance, game theories. Studies on expected utility,
values, habits, and emotions take heed of the final goals and motivations, providing
fundamental assumptions for neo-institutionalist and behavioral approaches of vari-
ous stripes. Efficient factors are any stimulus, intervention, or treatment that can
elicit a response; thus, they are central to theories of policy instruments, regimes, or
political communication, among many others.

With some exceptions (e.g., Bache et al., 2012; Kurki, 2006), current theories
seldom claim an explicit legacy with the original canon. The doctrine has fallen
into disrepute as improperly scientific, because it invoked a metaphysical reason to
justify the causal standing of its four principles. The tenet that individuals with
similar features, in a similar situation, with similar motivations, under equivalent
stimuli did and will behave in similar ways was justified by the belief that all
embodied the same metaphysical essence. As Aristotle argued in a seminal frag-
ment, planets do not twinkle because planets are near things, and not twinkling was
intrinsic to near things. Thus, the next planet will not twinkle, too, in force of its
“near-thingness.”

This line of reasoning easily lends itself to circular arguments that restate general
assumptions instead of probing them. As late as 1673, Moliere still had reasons to
satirize it. In his comedy The Hypochondriac, a “docto doctore” explains in dog
Latin that opium makes people sleepy because it embodies a “dormitive virtue.”
However, the ultimate criticism came from the British Empiricists, who saw in the
appeal to essences a mode for preserving beliefs against evidence and a fundamen-
tal obstacle to progress and learning.
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1.2.2 Elephants by the Rules

The rejection of metaphysical warrants has called for a different ground for causal
inference. Whether a reliable connection exists between being a near thing and not
twinkling across cases, so the argument goes, it can only be decided empirically.

Yet, causal evidence does not come to us with labels and numbers attached.
Assumptions are still needed about the empirical traces that distinguish between
relevant and irrelevant causal factors. In Hume’s much-quoted words, causally rel-
evant is:

an object followed by another and where all the objects, similar to the first, are followed by
objects similar to the second. Or, in other words, where, if the first object had not been, the
second never had existed. (Hume, 1748, Section VII, Part II, §60).

In short, a factor is relevant to an outcome in the single case under two warrants: the
association of the two conforms to a regular pattern, and it supports counterfactual
reasoning.

1.2.2.1 Regularity

The regularity warrant—*“where all the objects, similar to the first, are followed by
objects similar to the second”—renders the empirical footprint of Aristotelian
essences without assuming them and builds on the repeated observation of similar
occurrences.

All objects sharing the same feature are similar and constitute a distinct class.
Regularity, then, is established between objects in different classes—for instance, in
the class of “swan” and in the class of “white.” It requires that any observation of the
first class entails one in the second. When the regularity holds, causal knowledge
can be circulated through handy formulae such as “if a swan, then white.”

To apply to the next instance, these formulae have to prove faultless, which is
hardly the case: classes and gauges are human constructs and can prove too strict or
liberal to capture actual causation in the next instance. Hence, regularity holds pro-
visionally only until we meet the black swan that forces a revision of the scope of
our regularity tenets.

Regularity may also seem perfect just because we measured two consequences
of the same process. These relationships are useful for prediction; however, they do
not qualify as causal as they do not grant control over the events’ odds as desired in
public policy. Indeed, a barometric reading can be relied upon to prepare for extreme
weather conditions but does not license the belief that the coming storm can be
tamed by forcing the barometer’s pointer. Thus, regularity can be a necessary trait
of usable knowledge but insufficient to declare the causal standing of a
relationship.
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1.2.2.2 Counterfactual

The counterfactual—“where, if the first object had not been, the second never had
existed”—enters the picture as the additional warrant to establish causal relevance
and ideally applies to the factor in the single case independent of regularity. The
warrant borrows from the classical rules of argumentation and the indirect proofs in
geometric demonstrations; however, it displays an empirical edge. Counterfactuals
link causal relevance to evidence that we could compel a change in the second
object by manipulating the first.

From the Humean definition, manipulation is usually understood as suppression;
more generally, it means switching the observed state of a feature into its opposite.
Thus, counterfactual reasoning requires, first, that we imagine the first object with
the switched feature and, then, that we can only draw impossible or contradictory
conclusions from it (e.g., Levi, 2007). An exemplary illustration comes directly
from Hume. Despite his deep skepticism toward the human mind’s ability to fully
understand causation, he conceded that our intuitions must be somehow right. To
justify his claim, he reasoned that had our mind always got causation wrong (switch-
ing the feature), then humankind would have long gone extinct (drawing a conclu-
sion), which contrasts with us thriving as a species (showing the conclusion absurd).
Such counterfactual criterion improves on the regularity test, as regular non-causal
features fail it: as a broken barometer cannot stop a storm, it cannot be recognized
as having any causal standing.

However, counterfactuals have their limits, too. First, they cannot be established
unless all the plausible alternative causes of the same outcome are ruled out. Hume’s
argument does not exclude that humankind’s evolutionary success instead depends
on, for instance, sheer luck—and the unaccounted alternative undermines the
cogency of its conclusion. The second and related issue is serious to the point of
earning the title of “fundamental problem of causal inference” in some quarters
(e.g., Holland, 1988). Unless we cast the same causal process in the same unit with
and without the feature of interest, we cannot establish whether switching the fea-
ture can change the outcome.

1.3 The Blind Sages’ Portrayals as the Book’s Blueprint

The criteria to establish causation by regularity and counterfactual evidence seem as
straightforward as impossible to meet. Nevertheless, techniques have been devel-
oped as strategies to circumvent the Humean paradoxes and provide empirical war-
rants to the claim of causal relevance. As Little shows in Chap. 2, technical
specialization has undermined the dialogue among techniques and their findings.
The appeal to regularity, counterfactual, or mechanistic principles has turned into as
many ultimate understandings of causation: “laws” and counterfactuals offered a
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rival ground for experimental practices; mechanisms took distances from both and
licensed causal analysis in actual cases only, under consideration that any conclu-
sion about aggregates necessarily entails an unfaithful reduction—in the end, all
models are wrong.

However, the possibility of integration remains when techniques commit to three
considerations and are consistent with a reasonable scientific realism. First, causa-
tion is real, but our best knowledge of it remains a useful approximation. Second,
regularity and counterfactuals are epistemic criteria to establish whether portrayals
qualify as valid causal accounts; mechanisms are ontological assumptions about
single actual elephants instead. Third, the difference between mechanistic descrip-
tion, models, and laws is not of kind but degree: when they address a common slice
of the world, they provide a map of it with different details, abstraction, and scope.
Under these commitments, techniques can be understood as devices to respond to
special questions about the elephant.

1.3.1 Can this Single Factor Make Any Difference?

The family of experimental and quasi-experimental techniques offers the most
renowned, successful, and contentious example at once due to the diffusion of ran-
domized controlled trials as the “gold standard” of scientific knowledge production
(e.g., Kabeer, 2020; Deaton & Cartwright, 2018; Dawid, 2000). This family shares
the consideration that although we cannot observe a counterfactual directly, we can
construe credible “twin worlds” and “treat” one so that the feature of interest pro-
vides the only difference to which the difference in responses can be ascribed.

As Battistin and Bertoni show in Chap. 3, this strategy keeps the role of causal
assumptions to the minimum required by a stimulus-response model: the treatment
is a supposedly efficient cause and connected to performance by a function of a
specific shape—often, linear—without further details. Unsurprisingly, these tech-
niques are a cornerstone of usable public policy knowledge: they can establish the
capacity of a change in taxation, expenditure, information, and regulation to elicit
some effect of interest, apparently without the need for further knowledge.

The credibility of this strategy’s conclusions, however, rests heavily on the
research design: findings are sound if the twin worlds are construed as statistically
identical and independent aggregates, the treatment is forced evenly onto all the
units of one world only, and the difference in responses is not affected by the treat-
ing procedure or unrelated endogenous dynamics. The threats arise as the statistical
aggregates with identical parameters can hide a remarkable inner heterogeneity that
may bias both groups’ responses in unknown directions. As elaborated by Negri in
Chap. 4 and Ornstein in Chap. 5, within the family, this heterogeneity is addressed
as the result of selection biases that can be reduced by accounting for observed
imbalances and crafting “populations of twins.” The solution, however, leaves the
issue open of the bending effects from unobservable factors.
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The (quasi-)experimental family, in short, can provide reliable measures of the
net effect of a treatment, but necessarily at the cost of disregarding the reasons for
the diversity in the responses of the treated.

1.3.2 Through Which Structures?

The diversity in responses is instead the driving concern of the second group of
techniques. They address it by flipping the experimental balance of model and
design and committing themselves to additional assumptions. They conceive of the
generative process as patterns of dependence and assign causal relevance to the
bundle of factors that fit them.

The reliance on models sidelines the issue of unit selection as, ideally, any unit
carries usable information about the tenability of the causal structure of interest.
The structure, moreover, provides the fixed points that still make counterfactuals
observable. However, models require criteria to select meaningful variables, and
structural assumptions provide partial guidance to it. The main decisions can only
be made in light of substantive theories about the generation of the outcome—
hence, of some previous local knowledge. Within this framework, each technique
relies on different languages and pursues different goals.

Path analysis develops within a Bayesian mindset and understands causation as
ordered dependencies fitting a few known shapes: chains, colliders, and forks. As
Roth clarifies in Chap. 6, these shapes explain because they elaborate on the con-
nection between an alleged causal condition and the dependent by displaying the
intermediate causal link, the common factor, or the equivalent alternative factors
that support the hypothesis about the unfolding of the causal process before the
outcome. The technique supports a neater identification of the mechanism linking a
factor of interest and its outcome, affords counterfactual analysis, and provides spe-
cific suggestions about the “scope conditions” ensuring the mechanisms. Réth con-
tends that these features qualify path analysis as the natural companion of
experimental studies for its capacity to establish the contextual requirements that
enhance and refine the validity of their findings.

Qualitative comparative analysis (QCA) instead builds on sets and Boolean alge-
bra and understands causal structures as teams of individually necessary and jointly
sufficient factors to an outcome. In Chap. 7, Damonte makes three points about the
explanatory import of the technique. First, its assumptions about the shape of causa-
tion support complex causal theories about the interactions of triggering, enabling,
or shielding conditions of some underlying causal process. Second, its parameters
of fit allow diagnosing the underspecification of the theory to the cases at hand,
while the algorithm provides a pruning counterfactual device that takes care of its
overspecification. Last, sets remap qualities onto quantities, which warrant mean-
ingful and sound solutions. Thus, QCA can formalize and test theories about the
teams of conditions beneath policy success and failure across given cases beyond
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special processes. As such, the technique especially suits the purpose of systematic
ex-post evaluation of policy designs.

1.3.3 Through Which Process?

The knowledge of the dynamics of a causal situation is the missing piece of knowl-
edge and the core concern of two further strategies, aiming to open up the black box
of causation. Both share the direct interest in the actors and their interplay as the
ultimate ground of causation, although their point of attack within the causal stream
of actions is different.

Bayesian process tracing addresses causation within its local context. In Chap. 8,
Bennett shows how analysts can rely on this technique to make causal sense of the
chain of events to policy success or failure retrospectively. The strategy understands
hypotheses as plausible Bayesian beliefs that we can entertain about the causal pro-
cess and that evidence can confirm or disconfirm. The weight of evidence rests on
the assumption that each hypothesis corresponds to a specific sequence of actions
and events that leave empirical traces. When the connection between a piece of
evidence and a hypothesis is unique, certain, or both, the actual retrieval of certain
traces in a case contributes to ranking hypotheses by their relative likelihood and
eventually licenses the ascription of the case to the hypothesis with the best standing.

Last but not the least, agent-based models make it possible to test hypotheses
about causal processes as emergent phenomena in silico. As Squazzoni and Bianchi
illustrate in Chap. 9, the technique relies on simulation to verify whether a certain
alignment of assumptions about actors and their constraints, when translated into
conditional rules of individual behavior and recursively played, returns performance
values close to the empirical responses of actual systems. The strategy requires
regularity and counterfactual assumptions about the options available to each agent,
rendered as alternative states, and about the consequence of choosing a state condi-
tional on the states of the relevant neighbors. These models shed light on the tenabil-
ity of different understandings of the mechanism that alternative policy constraints
or endowments activate in the field.

1.3.4 Considerations and Extensions

The order of the chapters, as Beach and Siewert reason in their Chap. 10, chimes
with the common prescription in mixed method research that a better causal knowl-
edge follows from a succession of techniques zooming into individual cases, where
causation unfolds as actual processes and explanations can find their ultimate vali-
dation. However, they consider the downward path of mixed methods lays knowl-
edge open to heterogeneity threats. The actual heterogeneity is always equal to the
number of instances under analysis; cross-case knowledge, however, requires that
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we dismiss some heterogeneity as irrelevant to afford comparisons and causal infer-
ences. The move to local contexts implies a twofold shift—from a low to a high
number of factors in the analysis and from coarse types to fine-grained tokens of
evidence—that seldom support cross-case findings. Hence, they contend that a
more fruitful and conventional strategy follows the upward path from local pro-
cesses over structures to the causal capacity of single triggers. This path allows
more conscious decisions about heterogeneity that can improve models and gauges.

In Chap. 11, Damonte and Negri conclude the journey. The chapter recognizes
the fragmented image of causation that the previous contributions convey and asks
whether such fragmentation is an undesirable state of affairs, as claimed by a long-
honored narrative from the history of science, or an eventually valuable situation, as
argued in the pluralist quarters of the philosophy of science. The point of contention
concerns the inability to yield dovetailing knowledge that would affect strategies
built on alternative tenets. The chapter revises these tenets and contends that,
whereas ontology offers complementary angles of attack to the causal elephant and
epistemology licenses interpretations that can estrange research communities from
one another, methodological reasoning about models and designs reconciles the
analyses when it emphasizes that causation corresponds to a few recognized shapes.
These shapes, the chapter concludes, offer a rough yet common map of the elephant
that strategies of any stripe can detail and enrich while pursuing their special
research interests—thus contributing to better policy knowledge.
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Chapter 2
Causation in the Social Realm

Daniel Little

Abstract Explanation is at the center of scientific research, and explanation almost
always involves the discovery of causal relations among factors, conditions, or
events. This is true in the social sciences no less than in the natural sciences. But
social causes look quite a bit different from causes of natural phenomena. They
result from the choices and actions of numerous individuals rather than fixed natural
laws, and the causal pathways that link antecedents to consequents are less exact
than those linking gas leaks to explosions. It is, therefore, a crucial challenge for the
philosophy of social science to give a compelling account of causal reasoning about
social phenomena that does justice to the research problems faced by social
scientists.

Learning Objectives
By studying this chapter, you will:

e Gain exposure to philosophical theories of causal explanation.

e Learn how “ontology” is important in social research.

e Learn about the theory of causal mechanisms.

e Become acquainted with how several causal research methodologies relate to
social ontology.

e Become acquainted with scientific realism as an approach to social research.

2.1 Why Discuss the Ontology of Causation?

Ontology precedes methodology. We cannot design good methodologies for scien-
tific research without having reasonably well-developed ideas about the nature of
the phenomena that we intend to investigate (Little, 2020). This point is especially
important in approaching the idea of social causation. Only when we have a reason-
ably clear understanding of the logic and implications of the scientific idea of
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causality can we design appropriate methods of inquiry for searching out causal
relations. And only then can we give a philosophically adequate justification of
existing methods—that is, an account of how the research method in question cor-
responds to a sophisticated understanding of the nature of the social world.

Here I will work within the framework of an “actor-centered” view of social
ontology (Little, 2006, 2014, 2016). On this view, the social realm is constituted by
individual actors who themselves have been cultivated and developed within ongo-
ing social relations and who conduct their lives and actions according to their under-
standings and purposes. Social structures, social institutions, organizations,
normative systems, cultures, and technical practices all derive their characteristics
and causal powers from the socially constituted and situated individuals who make
them up (Little, 2006).

This fact about social entities and processes suggests a high degree of contin-
gency in the social world. Unlike chemistry, the social world is not a system of law-
governed processes; it is instead a mix of different sorts of institutions, forms of
human behavior, natural and environmental constraints, and contingent events. The
entities that make up the social world at a given time and place have no essential
ontological stability; they do not fall into “natural kinds”; and there is no reason to
expect deep similarity across a number of ostensibly similar institutions—states, for
example, or labor unions. The “things” that we find in the social world are hetero-
geneous and contingent. And the metaphysics associated with classical thinking
about the natural world—Ilaws of nature; common, unchanging structures; and fully
predictable processes of change—do not provide appropriate building blocks for
our understandings and expectations of the social world nor do they suggest the
right kinds of social science theories and constructs.

Instead of naturalism, this actor-centered approach to social ontology leads to an
approach to social science theorizing that emphasizes agency, contingency, and
plasticity in the makeup of social facts. It recognizes that there is a degree of pattern
in social life, but emphasizes that these patterns fall far short of the regularities
associated with laws of nature. It emphasizes contingency of social processes and
outcomes. It insists upon the importance and legitimacy of eclectic use of multiple
social theories: social processes and entities are heterogeneous, and therefore, it is
appropriate to appeal to different types of social theories as we explain various parts
of the social world. It emphasizes the importance of path dependence in social
outcomes.

Box 2.1 Definitions
Agency: The fact that social change and causation derives from the purposive
actions of individual social actors.

Contingency: Social outcomes depend upon conjunctions of occurrences
that need not have taken place, so the outcome itself need not have taken
place. Closely related to “path dependency.”

(continued)
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Box 2.1 (continued)

Path dependency: The feature of social processes according to which
minor and underdetermined events in an early stage of a process make later
changes more probable. For example, the QWERTY arrangement of the type-
writer keyboard was selected in order to prevent typists from jamming the
mechanism by typing too rapidly. Fifty years later, after widespread adoption,
it proved impossible to adopt a more efficient arrangement of the keys to per-
mit more rapid typing.

Plasticity: A feature of an entity or group of entities according to which
the properties of the entity can change over time. Biological species demon-
strate plasticity through evolution, and social entities demonstrate plasticity
through the piecemeal changes introduced into them by a variety of actors and
participants.

How does this ontological perspective fit with current work in policy studies? There
are several current fields of social research that illustrate this approach particularly
well. One is the field of the “new institutionalism.” Researchers in this tradition
examine the specific rules and incentives that constitute a given institutional setting.
They examine the patterns of behavior that these rules and incentives give rise to in
the participants in the institution, and they consider as well the opportunities and
incentives that exist for various powerful actors to either maintain the existing insti-
tutional arrangements or modify them. Kathleen Thelen’s (2004) study of different
institutions of skill formation in Germany, Great Britain, the United States, and
Japan is a case in point. This approach postulates the causal reality of institutions
and the specific ensembles of rules, incentives, and practices that make them up; it
emphasizes that differences across institutions lead to substantial differences in
behavior; and it provides a basis for explanations of various social outcomes. The
rules of liability governing the predations of cattle in East Africa or Shasta County,
California, create very different patterns of behavior in cattle owners and other land-
owners in the various settings (Ellickson, 1991). It is characteristic of the new insti-
tutionalism that researchers in this tradition generally avoid reifying large social
institutions and look instead at the more proximate and variable sets of rules, incen-
tives, and practices within which people live and act.

2.2 Scientific Realism About the Social World
and Social Causation

We are best prepared for the task of discovering causal relationships in the social
world when we adopt a realist approach to the social world and to social causation.
We provide an explanation of an event or pattern when we succeed in identifying the
real causal conditions and events that brought it about. The central tenet of causal
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realism is a thesis about causal mechanisms and causal powers. Causal realism
holds that we can only assert that there is a causal relationship between X and Y if
we can offer a credible hypothesis of the sort of underlying mechanism that con-
nects X to the occurrence of Y. The sociologist Mats Ekstrom puts the view this
way: “the essence of causal analysis is ... the elucidation of the processes that gen-
erate the objects, events, and actions we seek to explain” (Ekstrom, 1992: 115).
Authors who have urged the centrality of causal mechanisms for explanatory pur-
poses include Roy Bhaskar (1975), Nancy Cartwright (1989), Jon Elster (1989),
Rom Harré and Madden (1975), Wesley Salmon (1984), and Peter Hedstrom (2005).

Scientific realism about social causes comes down to several simple ideas.

First, there is such a thing as social causation. Causal realism is a defensible posi-
tion when it comes to the social world: there are real causal relations among social
factors (structures, institutions, groups, norms, and salient social characteristics like
race or gender). We can give a rigorous interpretation to claims like “racial discrimi-
nation causes health disparities in the United States” or “rail networks cause changes
in patterns of habitation.”

Second, causal relations among factors or events depend on the existence of real
social-causal mechanisms linking cause to effect. Discovery of correlations among
factors does not constitute the whole meaning of a causal statement. Rather, it is
necessary to have a hypothesis about the mechanisms and processes that give rise to
the correlation. Hypotheses about the causal mechanisms that exist among factors
of interest permit the researcher to exclude spurious correlation (cases where varia-
tions in both factors are the result of some third factor) and to establish the direction
of causal influence (cases where it is unclear whether the correlation between A and
B results from A causing B or B causing A). So mechanisms are more fundamental
than regularities.

Third, the discovery of social mechanisms in policy studies often requires the
formulation of mid-level theories and models of these mechanisms and processes—
for example, the theory of free-riders. For example, an urban policy researcher may
observe that racially mixed high-poverty neighborhoods have higher levels of racial
health disparities than racially mixed low-poverty neighborhoods. This is an obser-
vation of correlation. Researchers like Robert Sampson (2010) would like to know
how “neighborhood effects” work in transmitting racial health disparities. What are
the mechanisms by which a neighborhood influences the health status of an indi-
vidual household? In order to attempt to answer this question, Sampson turns to
mid-level hypotheses in urban sociology that contribute to a theory of the mecha-
nisms involved in this apparent causal relationship. By mid-level theory, I mean
essentially the same thing that Robert Merton (1963) conveyed when he introduced
the term: an account of the real social processes that take place above the level of
isolated individual action but below the level of full theories of whole social sys-
tems. Marx’s theory of capitalism illustrates the latter; Jevons’s theory of the indi-
vidual consumer as a utility maximizer illustrates the former. Coase’s theory of
transaction costs (Coase, 1988) is a good example of a mid-level theory: general
enough to apply across a wide range of institutional settings, but modest enough in
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its claim of comprehensiveness to admit of careful empirical investigation.
Significantly, the theory of transaction costs has spawned major new developments
in the new institutionalism in sociology (Brinton & Nee, 1998).

And finally, it is important to recognize and welcome the variety of forms of
social scientific reasoning that can be utilized to discover and validate the existence
of causal relations in the social world. Properly understood, there is no contradiction
between the effort to use quantitative tools to chart the empirical outlines of a com-
plex social reality, and the use of theory, comparison, case studies, process tracing,
and other research approaches aimed at uncovering the salient social mechanisms
that hold this empirical reality together.

2.2.1 Critical Realism

Critical realism is a specific tradition within the late-twentieth-century analytic phi-
losophy that derives from the work of Rom Harré and Roy Bhaskar (Harré &
Madden, 1975; Bhaskar, 1975; Archer et al., 2016). In brief, the view holds that the
ontological stance of realism is required for a coherent conception of scientific
knowledge itself. Unqualified skepticism about “unobservable entities” makes sci-
entific research and experimentation philosophically incoherent. We are forced to
take the view that the entities postulated by our best theories of the world are
“real”—whether electrons, viruses, or social structures. For Bhaskar, this ontologi-
cal premise has much the status of Kant’s transcendental arguments for causation
and space and time: we cannot make sense of experience without postulating causa-
tion and locations in space and time (Bhaskar, 1975).

Concretely in the social sciences, this is taken to mean that we can be confident
in asserting that social entities exist if these concepts play genuine roles in well-
developed and empirically supported theories of the social world: for example,
organizations, markets, institutions, social classes, normative systems, rules, ideolo-
gies, and social networks. Further, we can be confident in attributing causal powers
and effects to the various social entities that we have identified—always to be sup-
ported by empirical evidence of various kinds.

2.3 What Is Causation?

Let us turn now to a more specific analysis of causation. What do we mean by a
cause of something? Generally speaking, a cause is a circumstance that serves to
bring about (or renders more probable) its effect, in a given environment of back-
ground conditions. Causes produce their effects (in appropriate background condi-
tions). A current fruitful approach is to understand causal linkages in terms of the
specific causal mechanisms that link cause to effect.
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We can provide a preliminary definition of causation along these lines:

e A causes B in the presence of C; = 4. A suffices to bring about B in the presence
of conditions C; (sufficiency).

e A causes B in the presence of C; = 4. If C; were present but A had not occurred,
then B would not have occurred (necessity).

That is, A is necessary and sufficient in conditions C; for the production of
B. This definition can be understood in either a deterministic version or a probabi-
listic version. The deterministic version asserts that A in the presence of C; always
brings about B; the probabilistic version asserts that the occurrence of A in the pres-
ence of C; increases the likelihood of the occurrence of B.

There is a fundamental choice to be made when we consider the topic of causa-
tion. Are causes real, or are causal statements just summaries of experimental and
observational results and the statistical findings that can be generated using these
sets of data? The first approach is the position described above as causal realism,
while the second can be called causal instrumentalism. If we choose causal realism,
we are endorsing the idea that there is such a thing as a real causal linkage between
A and B; that A has the power to produce B; and that there is such a thing as causal
necessity. If we choose causal instrumentalism, we are agnostic about the underly-
ing realities of the situation, and we restrict our claims to observable patterns and
regularities. The philosopher David Hume (2007) endorsed the second view;
whereas many philosophers of science since the 1970s have endorsed the for-
mer view.

Most of the contributors to the current volume engage with the premises of
causal realism. They believe that social causation is real; there are real social rela-
tions among social factors (structures, institutions, groups, norms, and salient social
characteristics like race or gender), and there are real underlying causal mechanisms
and powers that constitute those causal relations. According to scientific realists, a
key task of science is to discover the causal mechanisms and powers that underlie
the observable phenomena that we study.

Causal realists acknowledge a key intellectual obligation that goes along with
postulating real social mechanisms: to provide an account of the ontological sub-
strate within which these mechanisms operate. In the social realm, the substrate is
the system of social actors whose mental frameworks, actions, and relationships
constitute the social world. This is what is meant by an “actor-centered” ontology of
the social world. On this view, every social mechanism derives from facts about
individual actors, the institutional context, the features of the social construction
and development of individuals, and the factors governing purposive agency in spe-
cific sorts of settings. Different research programs in the social sciences target dif-
ferent aspects of this nexus.

This view of the underlying reality of social causation justifies a conception of
causal necessity in the social realm. Do causes make their effects “necessary” in any
useful sense? This is the claim that Hume rejected—the notion that there is any
“necessary” connection between cause and effect. By contrast, the notion of natural
necessity is sometimes invoked to capture this idea:
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e A causes B: given the natural properties of A and given the laws of nature and
given the antecedent conditions, B necessarily occurs.

This can be paraphrased as follows:
* Given A, B occurs as a result of natural necessity.

So the sense of necessity of the occurrence of the effect in this case is this: given
A and given the natural properties and powers of the entities involved, B had to
occur. Or in terms of possible worlds and counterfactuals (Lewis, 1973), we can say:

e In any possible world in which the laws of nature obtain, when A occurs, B
invariably occurs as well.

Applied to social causation within the context of an ontology of actor-centered
social facts, here is what causal necessity looks like:

* Given the beliefs, intentions, values, and goals of various participants and given
the constraints, opportunities, and incentives created by the social context, when-
ever A occurs, the outcome B necessarily occurs [financial crisis, ethnic vio-
lence, rapid spread of infectious disease ...].

This conception aligns with Wesley Salmon’s idea of the “causal structure of the
world,” applied to the social world (1984). And this in turn indicates why causal
mechanisms are such an important contribution to the analysis of causation. A
causal mechanism is a constituent of this “stream of events” leading from A to B.

Probabilistic causal relations involve replacing exceptionless connections among
events with probabilistic connections among events. A has a probabilistic causal
relationship to B just in case the occurrence of A increases (or decreases) the likeli-
hood of the occurrence of B. This is the substance of Wesley Salmon’s (1984) crite-
rion of causal relevance. Here is Salmon’s idea of causal relevance:

* A s causally relevant to B if and only if the conditional probability of B given A
is different from the absolute probability of B (Salmon, 1984, adapted notation).

For a causal realist, the definition is extended by a hypothesis about an underly-
ing causal mechanism. For example, smoking is causally relevant to the occurrence
of lung cancer [working through physiological mechanisms X, Y, Z]. And cell phys-
iologists are expected to provide the mechanisms that connect exposure to tobacco
smoke to increased risk of malignant cell reproduction.

It is important to emphasize that we can be causal realists about probabilistic
causes just as we can about deterministic causes. A causal power or capacity is
expressed as a tendency to produce an outcome; but this tendency generally requires
facilitating conditions in order to be operative. The causal power is appropriately
regarded as being real, whether or not it is ever stimulated by appropriate events and
circumstances. A given cube of sugar is soluble, whether or not it is ever immersed
in water at room temperature.

These definitions have logical implications that suggest different avenues of
research and inquiry in the social sciences. First, both the deterministic and the
probabilistic versions imply the truth of a counterfactual statement: If A had not
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occurred in these circumstances, B would not have occurred. (Or if A had not
occurred in these circumstances, the probability of B would not have increased.)
The counterfactual associated with a causal assertion suggests an experimental
approach to causal inquiry. We can arrange a set of circumstances involving C; and
remove the occurrence of A and then observe whether B occurs (or observe the
conditional probability of the occurrence of B).

Another important implication of a causal assertion is the idea of a set of neces-
sary and sufficient conditions for the occurrence of E, the circumstance of explana-
tory interest. With deterministic causation, the assertion of a causal relationship
between A and B implies that A is sufficient for the occurrence of B (in the presence
of C)) and often the assertion implies that A is a necessary condition as well. (If A
had not occurred, then B would not have occurred.) On these assumptions, a valid
research strategy involves identifying an appropriate set of cases in which A, C;, and
B occur, and then observe whether the appropriate covariances occur or not.
J. L. Mackie (1974) provided a more detailed analysis of the logic of necessary and
sufficient conditions in complex conjunctural causation with his concept of an
INUS condition: “insufficient but non-redundant part of an unnecessary but suffi-
cient condition” (62). Significantly, Mackie’s formulation provides a basis for a
Boolean approach to discovering causal relations among multiple factors.

These definitions and logical implications give scope to a number of different
strategies for investigating causal relationships among various conditions. For prob-
abilistic causal relationships, we can evaluate various sets of conditional probabili-
ties corresponding to the presence or absence of conditions of interest. For
deterministic causal relationships, we can exploit the features of necessary and suf-
ficient conditions by designing a “truth table” or Boolean test of the co-occurrence
of various conditions (Ragin, 1987). This is the logic of Mill’s methods of similarity
and difference (Mill, 1988; Little, 1995). For both deterministic and probabilistic
causal relationships, we can attempt to discover and trace the workings of the causal
mechanisms that link the occurrence of A to the occurrence of B.

2.3.1 Causal Mechanisms

As noted above, the central tenet of causal realism is a thesis about the real existence
of causal mechanisms and causal powers. The fundamental causal concept is that of
a mechanism through which A brings about or produces B (Little 2011). According
to this approach, we can only assert that there is a causal relationship between A and
B if we can offer a credible hypothesis of the sort of underlying mechanism that
connects A to the occurrence of B. This is central to our understanding of causation
from single-case studies to large statistical studies suggesting causal relationships
between two or more variables. Peter Hedstrom and other exponents of analytical
sociology are recent voices for this approach for the social sciences (Hedstrom,
2005; Hedstrom & Ylikoski, 2010). An important paper by Machamer et al. (2000)
sets the terms of current technical discussions of causal mechanisms, and James
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Mahoney (2001) surveyed the various theories of causal mechanisms and called for
a greater specificity.

What is a causal mechanism? Consider this formulation: a causal mechanism is
a sequence of events, conditions, and processes leading from the explanans to the
explanandum (Little, 1991: 15, 2016: 190-192). A causal relation exists between A
and B if and only if there is a set of causal mechanisms that lead from A to B. This
is an ontological premise, asserting that causal mechanisms are real and are the
legitimate object of scientific investigation.

The theory has received substantial development in the biological sciences.
Glennan et al. (2021) put the mechanisms theory in the form of six brief theses:

(1) The most fruitful way to define mechanisms is that a mechanism for a phenomenon
consists of entities (or parts) whose activities and interactions are organized so as to be
responsible for the phenomenon.

(2) Scientists can only discover, describe, and explain mechanisms through the construction
of models, and these models are inevitably partial, abstract, idealized and plural.

(3) Mechanistic explanations are ubiquitous across the empirical sciences.

(4) Emphasizing that mechanistic explanations are ubiquitous in all scientific disciplines
does not entail that all scientific explanations are mechanistic.

(5) The diversity of kinds of mechanisms requires and explains the diversity of tools, strate-
gies and heuristics for mechanism discovery.

(6) The mechanisms literature is a rich source of insights that can be used to address chal-
lenging reasoning problems in science, technology and evidence-based policy.

This definition is developed for explanations in biology, but it works well with typi-
cal examples of social mechanisms.

The idea that there are real mechanisms embodied in a given domain of phenom-
ena provides a way of presenting causal relations that serves as a powerful alterna-
tive to the pure regularity view associated with Hume and purely quantitative
approaches to causation. Significantly, this is the thrust of Judea Pearl’s develop-
ment of structural equation modeling (discussed below): in order to get a basis for
causal inference out of a statistical analysis of a large dataset, it is necessary to
provide a theory of the causal mechanisms and relations that are at work in this
domain (Pearl, 2021).

Mechanisms bring about specific effects. For example, “over-grazing of the com-
mons” is a mechanism of resource depletion. Whenever the conditions of the mech-
anism are satisfied, the result ensues. Moreover, we can reconstruct why this would
be true for purposive actors in the presence of a public good (Hardin, 1968). Or
consider another example from the social sciences: “the mechanism of stereotype
threat causes poor performance on standardized tests by specific groups” (Steele,
2011). This mechanism is a hypothesized process within the cognitive—emotional
system of the subjects of the test, leading from exposure to the stereotype threat
through a specified cognitive—emotional mechanism to impaired performance on
the test. So we can properly understand a claim for social causation along these
lines: “C causes E” rests upon the hypothesis that “there is a set of causal mecha-
nisms that convey circumstances including C to circumstances including E.” In the
social realm, we can be more specific. “C causes E” implies the belief that “there is
a set of opportunities, incentives, rules, and norms in virtue of which actors in the
presence of C bring about E through their actions.”
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Are there any social mechanisms? There are many examples from every area of
social research. For example: “Collective action problems often cause strikes to
fail.” “Increasing demand for a good causes prices to rise for the good in a competi-
tive market.” “Transportation systems cause shifts of social activity and habitation.”
“Recognition of mutual interdependence leads to medium-term social cooperation
in rural settings.” In each case, we have a causal claim that depends on a hypothesis
about an underlying behavioral, cognitive, or institutional mechanism producing a
pattern of collective behavior.

The discovery of social mechanisms often requires the formulation of mid-level
theories and models of these mechanisms and processes—for example, the theory
of free-riders or the theory of grievance escalation in contentious politics. Mid-level
theories in the social sciences can be viewed as discrete components of a toolbox for
explanation. Discoveries about specific features of the workings of institutions,
individual-collective paradoxes, failures of individual rationality like those studied
in behavioral economics—all of these mid-level theories of social mechanisms can
be incorporated into an account of the workings of specific social ensembles. The
response of a university to a sudden global pandemic may be seen as an aggregation
of a handful of well-known institutional dysfunctions, behavioral patterns, and cog-
nitive shortcomings on the part of the various actors.

Aage Sgrensen summarizes a causal realist position for the social and policy sci-
ences in these terms: “Sociological ideas are best reintroduced into quantitative
sociological research by focusing on specifying the mechanisms by which change
is brought about in social processes” (Sgrensen, 1998: 264). Sgrensen argues that
social explanation requires better integration of theory and evidence. Central to an
adequate explanatory theory, however, is the specification of the mechanisms that
are hypothesized to underlie a given set of observations. “Developing theoretical
ideas about social processes is to specify some concept of what brings about a cer-
tain outcome—a change in political regimes, a new job, an increase in corporate
performance, ... The development of the conceptualization of change amounts to
proposing a mechanism for a social process” (Sgrensen, 1998: 239-240). If an edu-
cational policy researcher finds that there is an empirical correlation between
schools that have high turnover of teaching staff and high dropout rates, it is very
important to investigate whether there is a mechanism that leads from teacher turn-
over to student dropout. Otherwise, both characteristics may be the joint result of a
third factor (inadequate school funding, for example). Sgrensen makes the critical
point that one cannot select a statistical model for analysis of a set of data without
first asking the question, “What in the nature of the mechanisms do we wish to pos-
tulate to link the influences of some variables with others?” Rather, it is necessary
to have a hypothesis of the mechanisms that link the variables before we can arrive
at a justified estimate of the relative importance of the causal variables in bringing
about the outcome.

Emphasis on causal mechanisms for adequate social explanation has several
favorable benefits for policy research. Policy research is always concerned about



2 Causation in the Social Realm 21

causation: what interventions can be made that would bring about different out-
comes? When policy researchers look carefully for the social mechanisms that
underlie the processes that they study, they are in a much better position to diag-
nose the reasons for poor outcomes and to recommend interventions that will
bring about better outcomes. Emphasis on the need for analysis of underlying
causal mechanisms takes us away from uncritical reliance on uncritical statisti-
cal models.

2.3.2 Causal Powers

Some philosophers of science have argued that substantive theories of causal pow-
ers and properties are crucial to scientific explanation. Leading exponents of this
view include Rom Harré (Harré & Madden 1975), Nancy Cartwright (1989), and
Stephen Mumford (2009). Nancy Cartwright places real causal powers and capaci-
ties at the center of her account of scientific knowledge (1989). As she and John
Dupré put the point, “things and events have causal capacities: in virtue of the prop-
erties they possess, they have the power to bring about other events or states” (Dupré
& Cartwright, 1988). Cartwright argues, for the natural sciences, that the concept of
areal causal connection among a set of events is more fundamental than the concept
of a law of nature. And most fundamentally, she argues that identifying causal rela-
tions requires substantive theories of the causal powers (“‘capacities”, in her lan-
guage) that govern the entities in question. Causal relations cannot be directly
inferred from facts about association among variables. As she puts the point, “No
reduction of generic causation to regularities is possible” (1989: 90). The impor-
tance of this idea for sociological research is profound; it confirms the notion shared
by many researchers that attribution of social causation depends inherently on the
formulation of good, middle-level theories about the real causal properties of vari-
ous social forces and entities.

Cartwright’s philosophy of causation points to the idea of a causal power—a set
of propensities associated with a given entity that actively bring about the effect.
The causal powers theory rests on the claim that causation is conveyed from cause
to effect through the active powers and capacities that inhere in the entities making
up the cause.

The idea of an ontology of causal powers is that certain kinds of things (metals,
gases, military bureaucracies) have internal characteristics that lead them to interact
causally with the world in specific and knowable ways. This means that we can
sometimes identify dispositional properties that attach to kinds of things. Metals
conduct electricity; gases expand when heated; military bureaucracies centralize
command functions (Harré & Madden, 1975). Stephen Mumford and Rani Lill
Anjum explore the philosophical implications of a powers theory of causa-
tion (2011).
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The language of causal powers allows us to incorporate a number of typical
causal assertions in the social sciences: “Organizations of type X produce lower
rates of industrial accidents”; “paramilitary organizations promote fascist mobiliza-
tion”; “tenure systems in research universities promote higher levels of faculty
research productivity.” In each case, we are asserting that a certain kind of social
organization possesses, in light of the specifics of its rules and functioning, a dispo-
sition to stimulate certain kinds of participant behavior and certain kinds of aggre-
gate outcomes. This is to attribute a specific causal power to species of organizations
and institutions.

Sociologist James Coleman offered the view that we should distinguish carefully
between macro-level social factors and micro-level individual action (Coleman,
1990). He held that all social causation proceeded through three distinct paths:
social factors that influence individual behavior, individuals who interact with each
other and create new social facts, and the creation of new macro-level social factors
that are the aggregate result of individual actions and interactions at the micro-level.
Coleman did not believe that there were direct causal influences from one macro-
level social fact to another macro-level social fact. Coleman offered a diagram of
this view, which came to be known as “Coleman’s boat” (Fig. 2.1). On this view,
when we say that a certain social entity, structure, or institution has a certain power
or capacity, we mean something reasonably specific: given its configuration, it cre-
ates an environment in which individuals commonly perform a certain kind of
action. This is the downward strut in the Coleman’s boat diagram, labeled 1 in
Fig. 2.1. This approach has two important consequences. First, social powers are not
“irreducible”—rather, we can explain how they work by analyzing the specific envi-
ronment of formation and choice they create. And second, they cannot be regarded
as deriving from the “essential” properties of the entity. Change the institution even
slightly and we may find that it has very different causal powers and capacities.
Change the rules of liability for open-range grazing and you get different patterns of
behavior by ranchers and farmers (Ellickson, 1991).

Fig. 2.1 Coleman’s boat. Macro-level
(Author’s diagram after association
Coleman, 1990)

4

2

Micro

Micro-level mechanisms
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2.3.3 Manipulability and Invariance

Several other aspects of the causal structure of the world have been important in
recent discussions of causality in the social sciences. Jim Woodward is a leading
exponent of the manipulability (or interventionist) account. He develops his views
in detail in his recent book, Making Things Happen: A Theory of Causal Explanation
(2003). The view is an intuitively plausible one: causal claims have to do with judg-
ments about how the world would be if we altered certain circumstances. If we
observe that the concentration of sulfuric acid is increasing in the atmosphere lead-
ing to acid rain in certain regions, we might consider the increasing volume of
H,SO, released by coal power plants from 1960 to 1990. And we might hypothesize
that there is a causal connection between these facts. A counterfactual causal state-
ment holds that if X (increasing emissions) had not occurred, then Y (increasing
acid rain) would not have occurred. The manipulability theory adds this point: if we
could remove X from the sequence, then we would alter the value of Y. And this, in
turn, makes good sense of the ways in which we design controlled experiments and
policy interventions.

Woodward extends this analysis to develop the idea of a relationship that is
“invariant under intervention.” This idea follows the notion of experimental testing
of a causal hypothesis. We are interested in the belief that “X causes Y.” We look for
interventions that change the state of Y. If we find that the only interventions that
change Y, do so through their ability to change X, then the XY relation is said to be
invariant under intervention, and X is said to cause Y (Woodward, 2003: 369-370).
Woodward now applies this idea to causal mechanisms. A mechanism consists of
separate components that have intervention—invariant relations to separate sets of
outcomes. These components are modular: they exercise their influence indepen-
dently. And, like keys on a piano, they can be separately activated with discrete
results. This amounts to a precise and novel specification of the meaning of “causal
mechanism”: “So far I have been arguing that components of mechanisms should
behave in accord with regularities that are invariant under interventions and support
counterfactuals about what would happen in hypothetical experiments” (374).

A related line of thought on causal analysis is the idea of difference-making. This
approach to causation focuses on the explanations we are looking for when we ask
about the cause of some outcome. Here philosophers note that there are vastly many
conditions that are causally necessary for an event but do not count as being explan-
atory. Lee Harvey Oswald was alive when he fired his rifle in Dallas; but this does
not play an explanatory role in the assassination of Kennedy. Crudely speaking, we
want to know which causal factors were salient and which factors made a difference
in the outcome. Michael Strevens (2008) provides an innovative explication of this
set of intuitions through the idea of “Kairetic” explanation, a formal way of identi-
fying salient causal factors out of a haystack of causally involved factors in the
occurrence of an event guided by generality, cohesion, and accuracy. “To this end, I
formulate a recipe that extracts from any detailed description of a causal process a
higher level, abstract description that specifies only difference-making properties of
the process” (Strevens 2008: xiii).
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2.4 Pluralism About Causal Inquiry

This volume is concerned with the problem of causal inquiry and methods for the
discovery of causal relations among factors. How can social researchers identify
causal relations among social events and structures? The problem of causal infer-
ence is fundamental to methodology in the social and policy sciences. A well-
informed and balanced handbook of political science methodology is provided by
Box-Steffensmeier et al. (2008). Here I will provide a brief discussion of several
approaches to causal inferences in the social sciences that follows the typology
offered there. Especially relevant is Henry Brady’s contribution to the volume
(Brady, 2008).

In their introduction to the volume, Box-Steffensmeier, Brady, and Collier pro-
pose that there are three important kinds of questions to answer when we are inves-
tigating the idea of causal relations in the social world. First is semantic: what do we
mean by statements such as “A causes B”? Second is ontological: what are the fea-
tures of the world that we intend to identify when we assert a causal relationship
between A and B? And third is epistemological: through what kinds of investiga-
tions and processes of inference can we establish the likelihood of a causal assertion
about the relationship that exists among two or more features of the social world?
The last question brings us to scientific methodology and a variety of techniques of
causal inquiry and inference. However, Box-Steffensmeier, Brady, and Collier are
correct in asserting the prior importance of the other two families of questions. We
cannot design a methodology of inquiry without having a reasonably well-developed
idea of what it is that we are searching for, and that means we must provide reason-
able answers to the semantic and ontological questions about causation first. The
editors also make a point that is central to the current chapter as well, in favor of a
pluralism of approaches to the task of causal inquiry in the social sciences (2008:
29). There is no uniquely best approach to causal inquiry in the social and policy
sciences. The editors refer explicitly to a range of approaches that can be used to
investigate causation in the social world: qualitative and quantitative investigation,
small-n or large-n studies, experimental data, detailed historical narratives, and
other approaches.

Henry Brady (2008) provides a useful typology of several families of methods of
inquiry and inference that have developed within the social sciences and that find a
clear place within the semantic and ontological framework of causation that is
developed in this chapter. Brady distinguishes among “neo-humean regularity”
approaches, counterfactual approaches, manipulation approaches, and mechanism
approaches. And he shows how a wide range of common research methods in the
social sciences fall within one or the other of these rubrics. Each of these families of
approaches derives from a crucial feature of what we mean by a causal relationship:
the fact that causes commonly produce their effects, giving rise to observable regu-
larities; the fact that causes act as sufficient and necessary conditions for their
effects, giving rise to the possibility of making inferences about counterfactual sce-
narios; the fact that causes produce or inhibit other events, giving rise to the
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possibility of intervening or manipulating a sequence of events; and the fact that
causal relations are real and are conveyed by specific (unobservable) sequences of
mechanisms leading from cause to effect, giving rise to the importance of attempt-
ing to discover the operative mechanisms.

Brady’s typology suggests a variety of avenues of causal inquiry that are possible
in the social sciences, given the foregoing analysis of social causes. The ideas
sketched in previous sections about the ontology of social causation support multi-
ple avenues for discovering causation. Causes produce their effects, causes work
through mechanisms, causal relationships should be expected to result in strong
associations among events, and causal necessity supports counterfactual reasoning.
We can thus design methods of inquiry that take advantage of the various of onto-
logical characteristics of social causation.

First, the primacy of “real underlying causal mechanisms” suggests that direct
research aimed at discovery of the social pathways through which a given outcome
is produced by the actions of individual actors within given institutional and norma-
tive circumstances is likely to be fruitful. Theory formation about the “institutional
logics” created by a given institutional setting can be supplemented by direct study
of cases to attempt to identify the pathways hypothesized (Thornton et al., 2012).
These insights into the ontology of causation provide encouragement for case-based
methods of inquiry, including process tracing, comparative studies, and testing of
middle-level social theories of mechanisms. This is a set of methodological ideas
supporting causal inquiry developed in detail by George and Bennett (2005),
Steinmetz (2004, 2007), and Ermakoff (2019).

Second, the logic of necessary and sufficient conditions associated with the
concept of a cause implies methods of research based on experimentation and
observation. If we hypothesize that X is a necessary condition for the occurrence
of Y, we can design a research study that searches for cases in which Y occurs but
X does not. Ragin (1987), Mill (1988), and Tarrow (2010) describe the logic of
such cases. The logic of necessary and sufficient conditions also supports research
designs based on experimental and quasi-experimental methods—research stud-
ies in which the researcher attempts to isolate the phenomenon of interest and
observes the outcomes with and without the presence of the hypothetical causal
factor. Woodward (2003) illustrates the underlying logic of the experimental
approach.

John Stuart Mill’s methods of similarity and difference (1988) derive from this
feature of the logic of causation. If we believe that A; & A, are jointly sufficient to
produce B, we can evaluate this hypothesis by finding a number of cases in which
Aj, Ay, and B occur and examine whether there are any cases where A; & A, are
present but B is absent. If there is such a case, then we can conclude that A; & A,
are not sufficient for B. Likewise, if we believe that A; is necessary for the occur-
rence of B, we can collect a number of cases and determine whether there are any
instances where B occurs but Aj is absent. If so, we can conclude that W is not
necessary for the occurrence of B.
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2.4.1 Case Studies and Process Tracing

Alexander George and Andrew Bennett (2005) argue for the value of a case study
method of social research. The core idea is that investigators can learn about the
causation of particular events and sequences by examining the events of the case in
detail and in comparison with carefully selected alternative examples. Here is how
George and Bennett describe the case study method:

The method and logic of structured, focused comparison is simple and straightforward. The
method is “structured” in that the researcher writes general questions that reflect the
research objective and that these questions are asked of each case under study to guide and
standardize data collection, thereby making systematic comparison and cumulation of the
findings of the cases possible. The method is “focused” in that it deals only with certain
aspects of the historical cases examined. The requirements for structure and focus apply
equally to individual cases since they may later be joined by additional cases. (George &
Bennett, 2005: 67)

The case study method is designed to identify causal connections within a domain
of social phenomena. How is that to be accomplished? The most important tool that
George and Bennett describe is the method of process tracing. “The process-tracing
method attempts to identify the intervening causal process—the causal chain and
causal mechanism—between an independent variable (or variables) and the out-
come of the dependent variable” (206). Process tracing requires the researcher to
examine linkages within the details of the case they are studying and then to assess
specific hypotheses about how these links might be causally mediated.

2.4.2 Quantitative Research Based on Observational Data

Quantitative studies of large populations are supported by this theory of causation,
if properly embedded within a set of hypotheses about causal relations among the
data. In his presentation of the logic of “structural equation modeling” (SEM) and
causal inference, Judea Pearl (2000, 2021) is entirely explicit in stating that pure
statistical analysis of covariation cannot establish causal relationships. In particular,
Pearl argues that a causal SEM requires:

A set A of qualitative causal assumptions, which the investigator is prepared to defend on
scientific grounds, and a model MA that encodes these assumptions. (Typically, MA takes
the form of a path diagram or a set of structural equations with free parameters. A typical
assumption is that certain omitted factors, represented by error terms, are uncorrelated with
some variables or among themselves, or that no direct effect exists between a pair of vari-
ables.) (Pearl, 2021: 71)

Aage Sgrensen takes a similar view and describes the underlying methodological
premise of valid quantitative causal research in these terms:

Understanding the association between observed variables is what most of us believe
research is about. However, we rarely worry about the functional form of the relationship.
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The main reason is that we rarely worry about how we get from our ideas about how change
is brought about, or the mechanisms of social processes, to empirical observation. In other
words, sociologists rarely model mechanisms explicitly. In the few cases where they do
model mechanisms, they are labeled mathematical sociologists, not a very large or impor-
tant specialty in sociology. (Sgrensen, 2009: 370)

Purely quantitative studies do not establish causation on their own; but when pro-
vided with accompanying hypotheses about the mechanisms through which the
putative causal influences obtain, quantitative study can substantially increase our
confidence in inferences about causal relationships among factors. Quantitative
methods for research on causation advanced significantly through the development
of structural equation models (SEMs) and the structural causal model methodology
described by Judea Pearl and others (Pearl, 2000; Pearl, 2009, 2021). This approach
explicitly endorses the notion that quantitative methods require background assump-
tions about causal mechanisms: “one cannot substantiate causal claims from asso-
ciations alone, even at the population level—behind every causal conclusion there
must lie some causal assumption that is not testable” (Pearl, 2009: 99).

2.4.3 Randomized Controlled Trials
and Quasi-experimental Research

The method of randomized controlled trials (RCT) is sometimes thought to be the
best possible way of establishing causation, whether in biology or medicine or
social science. An experiment based on random controlled trials can be described
simply. It is hypothesized that:

(H) A causes B in a population of units P.

An experiment testing H is designed by randomly selecting a set of individuals
from P into G (the test group) and randomly assigning a different set of individu-
als from P into G0 (the control group). Gy and G, are exposed to A (the
treatment) under carefully controlled conditions designed to ensure that the ambient
conditions surrounding both tests are approximately the same. The status of each
group is then measured with regard to B, and the difference in the value of B between
the two groups is said to be the “average treatment effect” (ATE). If the average
treatment effect is greater than zero, there is prima facie reason to accept H.

This research methodology is often thought to capture the logical core of experi-
mentation and is sometimes thought to constitute the strongest evidence possible for
establishing or refuting a causal relationship between A and B. It is thought to rep-
resent a purely observational way of establishing causal relations among factors.
This is so because of the random assignment of individuals to the two groups (so
potentially causally relevant individual differences are averaged out in each group)
and because of the strong efforts to isolate the administration of the test so that each
group is exposed to the same unknown factors that may themselves influence the
outcome to be measured. As Handley et al. (2018) put the point: “Random
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allocation minimizes selection bias and maximizes the likelihood that measured and
unmeasured confounding variables are distributed equally, enabling any differences
in outcomes between the intervention and control arms to be attributed to the inter-
vention under study” (Handley et al., 2018: 6). The social and policy sciences are
often interested in discovering and measuring the causal effects of large social con-
ditions and interventions—"“treatments”, as they are often called in medicine and
policy studies. It might seem plausible, then, that empirical social science should
make use of random controlled trials whenever possible, in efforts to discover or
validate causal connections.

However, this supposed “gold standard” status of random controlled trials has
been seriously challenged in the last several years. Serious methodological and
inferential criticisms have been raised of common uses of RCT experiments in the
social and behavioral sciences, and philosopher of science Nancy Cartwright has
played a key role in advancing these criticisms. Cartwright and Hardie (2012) pro-
vided a strong critique of common uses of RCT methodology in areas of public
policy, and Cartwright and others have offered convincing arguments to show that
inferences about causation based on RCT experiments are substantially more lim-
ited and conditional than generally believed.

A pivotal debate among experts in a handful of fields about RCT methodology
took place in a special issue of Social Science and Medicine in 2018. This volume
is an essential reading for anyone interested in causal reasoning. Especially impor-
tant is Deaton and Cartwright (2018). The essence of their critique is summed up in
the abstract: ““We argue that the lay public, and sometimes researchers, put too much
trust in RCTs over other methods of investigation. Contrary to frequent claims in the
applied literature, randomization does not equalize everything other than the treat-
ment in the treatment and control groups, it does not automatically deliver a precise
estimate of the average treatment effect (ATE), and it does not relieve us of the need
to think about (observed or unobserved) covariates” (Deaton & Cartwright, 2018).
Deaton and Cartwright provide an interpretation of RCT methodology that places it
within a range of comparably reliable strategies of empirical and theoretical inves-
tigation, and they argue that researchers need to choose methods that are suitable to
the problems that they study.

One of the key concerns they express has to do with extrapolating and general-
izing from RCT studies (Deaton & Cartwright, 2018: 3). A given RCT study is car-
ried out in a specific and limited set of cases, and the question arises whether the
effects documented for the intervention in this study can be extrapolated to a broader
population. Do the results of a drug study, a policy study, or a behavioral study give
a basis for believing that these results will obtain in the larger population? Their
general answer is that extrapolation must be done very carefully. “We strongly con-
test the often-expressed idea that the ATE calculated from an RCT is automatically
reliable, that randomization automatically controls for unobservables, or worst of
all, that the calculated ATE is true [of the whole population]” (Deaton & Cartwright,
2018: 10).

The general perspective from which Deaton and Cartwright proceed is that
empirical research about causal relationships—including
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experimentation—requires a broad swath of knowledge about the processes, mech-
anisms, and causal powers at work in the given domain. Here their view converges
philosophically with that offered by Pearl above. This background knowledge is
needed in order to interpret the results of empirical research and to assess the degree
to which the findings of a specific study can plausibly be extrapolated to other
populations.

These methodological and logical concerns about the design and interpretation
of experiments based on randomized controlled trials make it clear that it is crucial
for social scientists to treat RCT methodology carefully and critically. Deaton and
Cartwright agree that RCT experimentation is a valuable component of the toolkit
of sociological investigation. But they insist that it is crucial to keep several philo-
sophical points in mind. First, there is no “gold standard” method for research in
any field; rather, it is necessary to adapt methods to the nature of the data and causal
patterns in a given field. Second, Cartwright (like most philosophers of science) is
insistent that empirical research, whether experimental, observational, statistical, or
Millian, always requires theoretical inquiry into the underlying mechanisms that
can be hypothesized to be at work in the field. Only in the context of a range of theo-
retical knowledge is it possible to arrive at reasonable interpretations of (and gener-
alizations from) a set of empirical findings.

Many issues of causation in the social and policy sciences cannot be addressed
in a controlled laboratory environment. In particular, in many instances, it is impos-
sible to satisfy the condition of random assignment of individuals to control and
treatment groups. Much data available for social science and policy research is gath-
ered from government databases (Medicaid, Department of Education, Internal
Revenue Service) and was assembled for statistical and descriptive purposes.
Hypotheses about the causes of failing schools, ineffective prison reforms, or faulty
regulatory systems are not amenable to the strict requirements of randomized con-
trolled trials. However, social and policy scientists have developed practical meth-
ods for probing causation in complex social settings using natural experiments, field
experiments, and quasi-experiments.

Quasi-experiments, field experiments, and natural experiments are sometimes
defined as “randomized controlled trials carried out in a real-world setting” (Teele,
2014: 3). This definition is misleading, because the crucial feature of RCTs is absent
in a quasi-experiment: the random assignment of units to control and treatment
groups. What quasi-experiments have in common is an effort to replace random
assignments of units to control and treatment groups with some other way of strati-
fying available data that would permit inference about cause and effect. Quasi-
experiments involve making use of observational data about similar populations that
have been exposed to different and potentially causally relevant circumstances. The
researcher then attempts to discover treatment effects based on statistical properties
of the two groups. In this volume, Battistin and Bertoni (Chap. 3) describe an inge-
nious set of constructs to uncover the effects of cheating on educational perfor-
mance examination scores in Italy, based on what they refer to as “instrumental
variables” and “regression discontinuity design.” The former is a component of the
composition of the control group that can be demonstrated to be random. The
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authors show how this randomness can be exploited to discover the magnitude of
effects of the non-random components in the composition of the control group. The
latter term takes advantage of the fact that some data sets (class size in Italy, for
example) are “saw-toothed” with respect to a known variable. The example they use
is the government policy in Italy that regulates class size. School populations
increase linearly, but government policy establishes the thresholds at which a school
is required to create a new class. So class size increases from the minimum to the
maximum, then declines sharply, and continues. This fact can be exploited to exam-
ine school performance in classes currently near the minimum versus classes
currently near the maximum. This approach removes school population size from
the selection and therefore succeeds in removing a confounding causal influence,
which is exactly what randomization was intended to do.

The reasoning illustrated in Battistin and Bertoni (Chap. 3) is admirable in the
authors’ effort to squeeze meaningful causal inferences out of a data set that is
awash with non-random elements. However, as Battistin and Bertoni plainly dem-
onstrate, it is necessary to be rigorously critical in developing and evaluating these
kinds of research designs and inferences. Stanley Lieberson’s Making It Count
(1985) formulates a series of difficult challenges for the logic of quasi-experimental
design that continues to serve as a cautionary tale for quantitative social and policy
research. Lieberson believes that there are almost always unrecognized forms of
selection bias in the makeup of quasi-experimental research designs that potentially
invalidates any possible finding. Cartwright and Hardie (2012) extend these critical
points by underlining the limitations on generalizability (external validity) that are
endemic to experimental reasoning. So selection bias is still a possibility that can
interfere with valid causal reasoning in the design of a quasi-experiment.

What conclusions should we draw about experiments and quasi-experiments?
What is the status of randomized controlled trials as a way of isolating causal rela-
tionships, whether in sociology, medicine, or public policy? The answer is clear:
RCT methodology is a legitimate and important tool for sociological research, but
it is not fundamentally superior to the many other methods of empirical investiga-
tion and inference in use in the social sciences. Methodologies supporting the
design and interpretation of quasi-experiments are also subject to important meth-
odological cautions in the social science and policy studies. It is necessary to
remain critical and reflective in assessing the assumptions that underlie any social
science research design, including randomized controlled trials and sophisticated
quasi-experiments.

2.4.4 Generative Models and Simulation Methods

Advances in computational power and software have made simulations of social
situations substantially more realistic than in previous decades. An early advance
took place in general equilibrium theory, leading to a set of models referred to as
“computable general equilibrium models.” Instead of using a three-sector model to
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illustrate the dynamics of a general equilibrium model of a market economy, it is
now feasible to embody assumptions for one hundred or more industries and work
out the equilibrium dynamics of this substantially more realistic representation of
an economic system using a computable model (Taylor, 1990). Of special interest
for political scientists and policy scholars is the increasing sophistication of agent-
based models (de Marchi and Page, 2008). Kollman et al. (2003) provide a highly
informative overview of the current state of the field in their Computational Models
in Political Economy. They describe the chief characteristics of an agent-based
model in these terms:

The models typically have four characteristics, or methodological primitives:
agents are diverse, agents interact with each other in a decentralized manner, agents
are boundedly rational and adaptive, and the resulting patterns of outcomes comes
often do not settle into equilibria.... The purpose of using computer programs in
this second role is to study the aggregate patterns that emerge from the “bottom up”
(Kollman et al. 2003: 3).

An often-cited early application of agent-based models was Thomas Schelling’s
segregation model. Schelling demonstrated that residential segregation was likely to
emerge from a landscape in which two populations had tolerant but finite require-
ments for the ethnic composition of their neighborhoods (Schelling, 1978). A ran-
dom landscape populated with a mix of the two populations almost always develops
into a segregated landscape of the populations after a number of iterations. Agent-
based models can be devised to provide convincing “generative” explanations of a
range of collective phenomena; and when developed empirically by calibrating the
assumptions of the model to current empirical data, their results can result in rea-
sonable predictions about the near-term future of a given social phenomenon
(Epstein, 2006).

We can look at ABM simulation techniques as a form of “mechanisms” theory.
A given agent-based model is an attempt to work out the dynamics of individual-
level actions at the meso- and macro-level; and this kind of result can be interpreted
as an empirically grounded account of the mechanisms that give rise to a given kind
of social phenomenon. This feature of agent-based model methodology gives
researchers yet another tool through which to probe the social world for causal rela-
tions among social features.

2.5 Realism and Methodological Pluralism

Let us draw to a close. Here are some chief features of social science research that
proceeds in ways consistent with this realist view of causation in the social world:

* Productive social science research makes use of eclectic multiple theories and do
not expect a unified social theory that explains everything.

e Realist social scientists are modest in their expectations about social
generalizations.
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e They look for causal mechanisms as a basis for social explanation.

* They anticipate heterogeneity and plasticity of social entities.

e They are prepared to use eclectic methodologies—quantitative, comparative,
case study, ethnographic—to discover the mechanisms and mentalities that
underlie social change.

e Causal reasoning requires background theories about causal relationships in the
domain under study. These theories are corrigible, but some set of assumptions
about “the causal structure of the world” is unavoidable.

Central in these ideas is the value of methodological pluralism. The ultimate goal
of research in the social and policy sciences is to discover causal relationships and
causal mechanisms. We want to know how the social world works and how we
might intervene to change outcomes that are socially undesirable. There are a wide
range of methods of inquiry and validation that are used in the social sciences: eth-
nographic methods (interviews and participant observation), case study analysis,
comparative case study research, models and simulations of social arrangements of
interest, and large-scale statistical studies. The philosophical position of method-
ological pluralism is the idea that there is a place in social and policy research for
all of these tools and more besides. What holds them together is the fact that in each
case, our ultimate concern is to discover the causal relationships that appear to hold
in the social world and the mechanisms that underlie these relationships.

The central conclusion to be drawn here is that multiple methods of empirical
investigation are available, and our research efforts will be most productive when
we are able to connect empirical findings with hypotheses about social-causal
mechanisms that are both theoretically and observationally supported. And equally
importantly, it is crucial for researchers from different methodological traditions to
interact with each other so that their underlying assumptions about causation and
causal inference can be refined and validated.

Review Questions

1. What is an “actor-centered” approach to social explanation and policy research?

2. What is a social mechanism? Can you give an example or two?

3. Why is the assumption of random assignment of subjects to control and treat-
ment groups so important for the design of an experiment?

4. What is an agent-based model? Why is it useful in trying to discover causes in
the social world?

5. What is the difference between “ontology” and “methodology” in the social
sciences?
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Abstract Inference about the causal effects of a policy intervention requires
knowledge of what would have happened to the outcome of the units affected had
the policy not taken place. Since this counterfactual quantity is never observed, the
empirical investigation of causal effects must deal with a missing data problem.
Random variation in the assignment to the policy offers a solution, under some
assumptions. We discuss identification of policy effects when participation to the
policy is determined by a lottery (randomized designs), when participation is only
partially influenced by a lottery (instrumental variation), and when participation
depends on eligibility criteria making a subset of participant and non-participant
units as good as randomly assigned to the policy (regression discontinuity designs).
We offer guidelines for empirical analysis in each of these settings and provide
some applications of the methods proposed to the evaluation of education policies.
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By studying this chapter, you will:

e Learn to speak the language of potential outcomes and counterfactual impact
evaluation.

e Grasp different concepts of validity of a research design.

e Understand why randomization helps to detect causal effects.

e Discover how to exploit natural experiments and discontinuities to learn about
causality when proper experiments are not feasible.

e Discuss the credibility of the assumption underlying different empirical
strategies.
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3.1 Introduction

Do smaller classes yield better school outcomes? To answer this and many similar
questions, one needs to compare the outcome in the status quo (a large class) to
the outcome that would have been observed if the input of interest was set to a
different level (a small class). The comparison of students enrolled in small and
large classes is always a tempting avenue to answer this causal question. As this
comparison involves different students, its validity rests on the assumption that
students currently enrolled in small and large classes would have presented the
same outcome, on average, had they been exposed to the same number of class-
mates. This remains an untestable assumption that must be discussed on a case-
by-case basis.

The chapter discusses ways to combine policy designs and data to corroborate
the validity of this assumption. Sections 3.2 and 3.3 introduce the counterfactual
causal analysis talk. They describe the concepts of treatments, potential outcomes
and causal effects, and the attributes characterizing the validity of a research design.
Section 3.4 is about the beauty and limitations of randomized assignment to “treat-
ment” (e.g., a small class) and paves the way for the discussion in the following
sections. Specifically, these sections deal with methods for causal reasoning when
randomization is not feasible. Section 3.5 provides an example of instrumental vari-
ation in treatment assignment arising from a natural experiment. Section 3.6 is
devoted to the closest cousin to randomization, the regression discontinuity design.
Section 3.7 offers some concluding remarks.

Our discussion of empirical methods for causal reasoning is far from exhaustive.
For example, we do not discuss research designs that exploit longitudinal data and
rely on assumptions on pre-treatment outcome trends (e.g., difference-in-differences
and synthetic control methods). Similarly, we do not cover matching methods (see
Chap. 4 of this volume). In addition, our presentation will mostly focus on the rea-
soning underlying design-based identification and will only barely touch issues
related with estimation. The interested reader can refer to the book by Angrist and
Pischke (2008) for a discussion of these topics.

3.2 Causation and Counterfactual Impact Evaluation:
The Jargon

It is useful to start by clarifying what we mean by “causes” and “treatment effects.”
We consider a population of units indexed by i, withi =1, ..., N. Although our nar-
rative will often consider individuals as the units of analysis, the same setting
extends to other statistical units such as households, villages, schools, or
municipalities.
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3.2.1 Causes as Manipulable Treatments

In the population we study, some units are exposed to a cause, which is a treatment
or intervention that manipulates factors that may affect a certain outcome. For
instance, we might be interested in studying whether class size at primary school
affects student performance. Class size here is the treatment and performance is the
outcome, which is typically measured using standardized tests. In many countries,
class size formation depends on grade enrollment so that, across cohorts, the num-
ber of students in the class may change because enrollment changes or because a
specific policy affects the regulation. We will use the words “cause”, “treatment”, or
“intervention” interchangeably.

The avenue we take here has some limitations, as not all causes worth consider-
ing are manipulable in practice (consider, for example, gender, ethnicity, or genetic
traits). Moreover, the design-based approach we describe below may be coarse at
times and aimed at shedding light on one particular aspect of a more articulated
model. For example, empirical evidence on the causal effects of class size on
achievement bundles up the possible contribution of multiple channels that may
lead to a better learning environment in small classes. The investigation of channels
and mechanisms behind the uncovered effects calls for theories and structural mod-
els. The most relevant question to consider turns on the quality of the design-based
strategy and on our faith to prop up a more elaborate theoretical framework.

We focus only on binary treatments, that is, we assume that treatment status is
described by a binary random variable D; taking value one if unit 7 is exposed to
treatment (“treated” or “participant”) and zero otherwise (“untreated”, “non-partic-
ipant”, or “control”). In the class size example, this amounts to considering a setting
in which students can be enrolled in small or large classes. The extension to the case
of multi-valued or continuous treatment (for example, the number of classmates) is
logically identical but requires a more cumbersome notation. More in general, the
binary case is always worth of consideration even in a more general context as it
helps understand the main challenges in the quest for detecting causal effects. A
related issue concerns public policies that are designed as “bundles” of multiple
components. In those cases, policy-makers are often interested in disentangling the
effect of every component of the policy. We abstract from this problem in our dis-
cussion, but emphasize here that the ability to address this question will depend, in
general, on the exposure of subjects to different components.

We must take a stand on the reasons why different units end up having a value of
D, equal to one or zero. This is the so-called “assignment rule” and is at the core of
any evaluation study. Assignment to treatment can be totally random. In our class
size example, this happens when students are randomized to a small or a large class
with equal probability and independently of socio-economic background or past
performance. When randomization is not at work, participation to treatment is most
likely the result of choices made by the units themselves, administrators of the pro-
gram, or policy makers. For example, parents can choose to enroll their children in
schools with smaller classes in the hope of a better learning environment. Finally,
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participation to treatment may depend on admission rules that units must comply
with. The case of class size formation based on total enrollment is a good example,
as the chance of being enrolled in a small class depends on a school’s yearly total
recruitment. As we shall see, our ability to assess causal effects grows with knowl-
edge of the assignment rule.

3.2.2  Effects as Differences Between Factual
and Counterfactual Outcomes

It is essential to set the stage for a transparent definition of the treatment effect. To
do so, we define Y;(1) and Y,(0) as the potential outcomes experienced if unit i is
treated (D; = 1) or untreated (D, = 0), respectively. The unit-level treatment effect of
D; on Y, is the difference between Y,(1) and Y;(0): A; = Y1) — Y«(0). Decades of
empirical studies using micro-data analyses have taught us that treatment effects
most likely vary across units or groups of units with very similar demographics. The
notation employed here accommodates for this possibility (the manuals by Angrist
& Pischke, 2008, and Imbens & Rubin, 2015, use the same approach).

The definition of A; unveils the fundamental problem that we face when we want
to estimate this quantity from the data. While the two potential outcomes can be
logically defined for each unit, they can never be observed simultaneously for the
same unit. This is true regardless of the assignment rule and the richness or sample
size of data we will ever work with. Specifically, the data can reveal only Y(1) for
units with D; = 1 and Y,(0) for units with D; = 0. We can, therefore, express the
observed outcome Y; as follows: Y; = Y,(1)D; + Y(0)(1 — D,) = Y{(0) + D(Y(1) — Y
0)). As simple as this can be, lack of observability of both potential outcomes
implies lack of observability of the unit-level effect A,. We can think of the unit-
level causal effect as the difference between an observed (factual) and an unob-
served (counterfactual) potential outcome. Factual quantities are those that can be
computed from the data. Counterfactual quantities can be logically defined but can
never be computed from data. For treated units, we observe Y; = Y,(1) and Y;(0) is the
counterfactual. The opposite is true for control units, for whom we observe Y; = Y;(0)
and Y,(1) is the counterfactual.

One way to get around this limitation is to settle for less than unit-level effects.
We might be interested in considering average treatment effects for the population
or only for some sub-groups. For instance, we define the average treatment effect
(ATE) as the average of the individual-level treatment effect in the whole popula-
tion: ATE = E(Y(1) — Y«0)). This parameter reflects our expectation of what would
happen if we were to expose to treatment a randomly chosen unit from the popula-
tion. Alternatively, we can consider the average treatment effect for the treated
(ATT), which describes our expectation for units who have been exposed to treat-
ment: ATT = E(Y(1) — Y,(0)l D; = 1). Analogously, the average treatment effect for
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the non-treated (ATNT) is informative about what would have happened to the
untreated if they had been exposed to the intervention:

ATNT =E(Y,(1)-Y,(0)I1D, =0).

Whether any of the above causal parameters can be retrieved from the data will
have to be discussed on a case-by-case basis our understanding of the assignment
rule plays a key role in this discussion.

3.2.3 What the Data Tell (And When)

Our journey to learn about treatment effects begins by comparing features of the
observed outcome Y, for treated and control units. For instance, the data reveal the
average outcomes for treated units, E(YJID; = 1), and control units,
E(YID;=0). Recalling the definition of potential outcomes, the naive comparison of
average outcomes by treatment group, E(Y|ID;=1) — E(Y)| D;=0) = E(Y(1)ID; = 1)
— E(Y/(0)l D; = 0), conveys the correlation between the treatment, D;, and the out-
come, Y,.

The causal interpretation of such naive comparison is controversial in most
cases. To see why, we can add and subtract from the right-hand side of the previous
equation the quantity E(Y;(0)ID; = 1). This is a counterfactual quantity, as the out-
come Y;(0) cannot be observed for treated units, and represents what would have
happened to treated units had they not participated to treatment. We can arrange the
terms and write:

E(Y,1D,=1)-E(Y,1D,=0)=E(Y,(1)-¥,(0)I D, =1)+E(Y,(0)I D, =1)
-E(Y,(0)1D, =0). 3.1

It follows that the naive comparison on the left-hand side of Eq. 3.1 is equal to
the sum of the ATT and the term E(Y(0)l D; = 1) — E(Y(0)l D, = 0), which is often
called “selection bias”. It is worth noting that this representation does not hinge on
any assumptions. Itis the result of a simple algebraic trick and, as such, is always true.

Selection bias is an error in the causal reasoning. It is different from zero when,
in the absence of treatment, the group with D; = 1 would have performed differently
from the group with D; = 0. The same concept is conveyed by the “correlation is not
causation” motto: correlation (the naive treatment—control comparison) has no
causal interpretation (that is, it does not coincide with the ATT) unless the selection
bias is zero. This reframes the quest for causal effects as a discussion on the exis-
tence of selection bias. A non-zero bias follows from having groups defined by
D; =1 and D; = 0 that are not representative of the same population, in the sense that
participation to treatment depends on non-random selection. At the end of the day,
selection bias reflects compositional differences between treatment and control
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units. Taking up our class size example, parents with a strong preference for smaller
classes are most likely selected in terms of socio-economic background and demo-
graphics. If this selection translates into a better learning potential of their children,
forming classes as a reflection of parental preference must create dis-homogenous
groups of students. In this case, detecting a correlation between class size and
achievement might just reveal dis-homogeneity across classes rather than a true
causal effect of class size.

Importantly, for the time being, we are agnostic about whether this dis-
homogeneity concerns characteristics of units that are observed in the data at hand
or not. In fact, any strategy that can adjust for compositional differences between
treated and control units also corrects for this bias. One leading example to consider
here is randomization. When classes are formed by a coin toss, composition is the
same. Even when it is because of sampling variability, differences in composition
must be as good as random. We will formalize this idea in Sect. 3.4, below. Instead,
Chapters 4 and 5 in this volume present methods to alleviate imbalances along
observable dimensions and discuss the identifying assumptions that permit to reach
causal conclusions once these differences are eliminated.

3.3 Shades of Validity

The assessment of a causal channel from treatment to the outcome depends on the
properties of the research design. In short, this is the toolbox of empirical methods
that allows one to distinguish between correlation and causality. Any strategy falling
short on this minimum requirement is not a valid option to consider for a good
researcher. On the other hand, a good research design must be able to detect pre-
cisely the causal relationship of interest. That is, you do not want your design to be
underpowered for the size of the treatment effect. Finally, the ideal research design
should be able to provide causal statements that apply to the largest share of units in
the population and extend to other contexts and times. The concern here is one of
generalizability, which is of fundamental importance for offering evidence-based
policy recommendations. Causal talk makes use of these three ideas of validity in
the development of a research design. This is what we will discuss briefly next. The
seminal textbook by Cook and Campbell (1979) provides a deeper treatment of
these topics.

3.3.1 Internal Validity: The Ability to Make a Causal Claim
from a Pattern Documented in the Data

Internal validity concerns the ability of assessing whether the correlation between
treatment and outcome depicts a causal relationship or if it could have been observed
even in the absence of the treatment. Therefore, internal validity is solely concerned
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with the presence of selection bias. It is achieved under a ceteris paribus compari-
son of units, when all else but the treatment is kept constant between treated and
control units. As we discussed above, this calls for the same composition of treat-
ment (small class) and control (large class) units. An internally valid conclusion is
the one without selection bias. One of the main advantages of using randomization
is that such ceteris paribus condition is met by design. Because of this, a properly
conducted randomization yields internally valid causal estimates.

3.3.2  Statistical Validity: Measuring Precisely the Relationship
Between Causes and Outcomes in the Data

Statistical validity refers to the appropriate use of statistical tools to assess the extent
of correlation between treatment and outcomes. It is fundamentally concerned with
standard errors and accuracy in assessing a statistical relationship. The main ques-
tion addressed by statistical validity is whether the chosen data and techniques of
statistical inference can produce precise estimates of very small treatment effects (a
statistically precise zero) or if, instead, the research design will likely produce sta-
tistical zeros (a statistically insignificant effect). An insignificant effect that is statis-
tically different from zero is a powerful oxymoron to summarize the idea underlying
statistical validity.

3.3.3 External Validity: The Ability to Extend Conclusions
to a Larger Population, over Time and Across Contexts

External validity is about the predictive value of a particular causal estimate for
times, places, and units beyond those represented in the study that produced it. The
concern posed by external validity is one of generalizability and out-of-sample pre-
diction. For example, an internally valid estimate for a given sub-group of the popu-
lation might not be informative about the treatment effect for other (potentially
different and policy-relevant) sub-groups. Similarly, ATT is, in general, different
from ATE. Replicability of the same results in other contexts and times is of funda-
mental interest for providing policy recommendations.

3.4 Random Assignment Strengthens Internal Validity

As Andrew Leigh puts it in his book “Randomistas: How Radical Researchers Are
Changing the World,” (Leigh, 2018) randomized controlled trials (RCTs) use “the
power of chance” to assign the groups. Randomization can be achieved by flipping
a coin, drawing the shorter straw, or using a computer to randomly assign statistical
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units to groups. In any of these cases, the result would be the same: the treatment
and the control group are random samples from the same population.

Random assignment ensures that treatment and control units are the same in
every respect, including their expected Y;(0). It follows that, in RCTs, selection bias
must be zero since E(Y;(0)l D; = 1) = E(Y(0)| D; = 0). In other words, what we
observe for control units approximates what would have happened to treated units
in the absence of treatment. It is worth noting that random assignment does not
work by eliminating individual differences, but it rather ensures that the composi-
tion of units being compared is the same.

RCTs ensure a ceteris paribus (i.e., without confounds) comparison of treatment
and control groups. Because of this, an RCT provides an internally valid research
design for assessing causality. Evidence in support of this validity can be obtained
using pre-intervention measurements. In fact, it is a good practice to collect this
information and test the validity of the design by carrying out a battery of “balanc-
ing” tests. In a properly implemented randomization, there are no selective differ-
ences in the distribution of pre-intervention measurements between treated and
control units. This statement does not rule out the possibility of between-group
differences arising from sampling variability, which is a problem concerning the
statistical validity (that is, the precision of point estimates) of RCTs.

Finally, under random assignment, the naive comparison will provide internally
valid conclusions about the average treatment effect on the treated (ATT), as we
have that E(Y)D; = 1) — E(Y)l D; = 0) = E(Y(1) — Y(0)ID; = 1). In addition, under
randomization, the groups with D; = 1 and D; = 0 are representative of the same
population so that E(Y«(1) — Y (O)ID; = 1) = E(Y(1) — Y«0)). This means that the
causal conclusions hold for any unit randomly selected from the population.

Random assignment to treatment is not uncommon in numerous fields of the
social sciences. One such example is the lottery-based allocation of pupils to schools
that are oversubscribed. This alternative to the traditional priority criterion based on
proximity should dampen school stratification caused by wealthy parents buying
houses in the close vicinity of high-quality schools. As a result, among the pool of
applicants to a school where oversubscription is resolved by a lottery, getting a seat
or not is completely random. Some researchers (see Cullen et al., 2006, for an
example) have exploited this to evaluate the educational effects of attending one’s
preferred school.

Another example is the Oregon Health Insurance Experiment (see Finkelstein
et al., 2012). Medicaid is one of the landmark US public health insurance programs
and provides care for millions of low-income families. In 2008, the state of Oregon
extended coverage of Medicaid by selecting eligible individuals with a lottery. This
gave researchers the unique opportunity to provide credible causal estimates of the
effect of health insurance eligibility on health care utilization, medical expenditure,
medical debt, health status, earnings, and employment.

Although RCTs are considered as the “gold standard” for providing internally
valid estimates of causal effects, they are not without shortcomings (see the excel-
lent surveys by Duflo et al., 2008 and Peters et al., 2018). External validity is often
perceived as the main limitation and more so for small-scale experiments on very
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specific subpopulations. Bates and Glennerster (2017) propose a framework to dis-
cuss generalizability based on four steps: identify the theory behind the program;
check if local conditions hold for that theory to apply; evaluate the strength of the
evidence for the required general behavioral change; evaluate whether the imple-
mentation process can be carried out well. External validity is granted if these four
conditions apply in a context different from the one where the experiment was con-
ducted. Statistical validity as well may challenge the significance of many small-
scale experiments (see Young, 2019).

RCTs have other limitations. Many RCTs are carried out as small-scale pilots
that shall be eventually scaled up to the entire population. Causal reasoning in this
context must consider the general equilibrium effects arising from this change in
scope. These effects are concerned with the possible externalities for non-participants
when the policy is implemented on a larger scale and the implications for market
equilibria. An additional concern about RCTs is that the sole fact of being “under
evaluation” may generate some behavioral response that has nothing to do with a
treatment effect.! Replicability of experiments also has been called into question in
many fields of the social sciences (see Open Science Collaboration, 2015, for psy-
chology and Camerer et al., 2016, for economics).

What happens when randomization is not a feasible option? This is the question
to which we turn next.

3.5 Internally Valid Reasoning Without RCTs:
Instrumental Variation

3.5.1 A Tale of Pervasive Manipulation

Randomizations obtained by design are not the only way to ensure ceteris paribus
comparisons. Randomness in the assignment to treatment may arise indirectly from
natural factors or events independently of the causal channel of interest. Under
assumptions that we shall discuss, these factors can be used instrumentally to pin
down a meaningful casual parameter. The most important takeaway message here is
that we must use assumptions to make up for the lack of randomization. Because of
this, much of the simplicity of the research design is lost, and internal validity must
be addressed on a case-by-case basis. We will present an example of the toolbox for
good empirical investigations using administrative data on student achievement
and, further below, class size.

Our working example makes use of standardized tests from INVALSI (a govern-
ment agency charged with educational assessment) for second and fifth graders in
Italian schools for the years 2009-2011. Italy is an interesting case study as it is

'Such quirky responses are called “Hawthorne” effects for treated subjects and “John Henry”
effects for controls.
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Fig. 3.1 Manipulation by % Cheating Classes
province (Angrist et al.,

2017). (Mezzogiorno
regions are bordered with
dashed lines)

by province

Kilometers

characterized by a sharp North—South divide along many dimensions, among which
school quality. This divide motivates public interventions to improve school inputs
in the South. As testing regimes have proliferated in the country, so has the tempta-
tion to cut corners or cheat at the national exam.> As shown in Fig. 3.1, the South is
distinguished by widespread manipulation on standardized tests. INVALSI tests are
usually proctored and graded by teachers from the same school, and past work by
Angrist et al. (2017) has shown that manipulation takes place during the grading
process. Classes with manipulated scores are those where teachers did not grade
exams honestly.

Consider the causal effect of manipulation on test scores. As scores are inflated,
the sign of this effect is obvious. However, the size of the causal effect (that is, by

2Cheating or manipulation is not unique to Italy, as discussed in Battistin (2016).
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how much scores are inflated) is difficult to measure because manipulation is not the
result of random factors. The incentive to manipulate likely decreases as true scores
increase so that the distribution of students’ true scores is not the same across classes
with teachers grading honestly or dishonestly. Again, this is a problem about the
composition of the two groups, as treatment classes (with manipulated scores) and
control classes (with honest scores) need not be representative of the same
population.

When empirical work is carried out using observational data, as it is the case
here, it is always illuminating to start from the thought experiment. This is the hypo-
thetical experiment that would be used to measure the causal effect of interest if we
had the possibility to randomize units. With observational data, the identification
strategy consists of the assumptions that we must make to replicate the experimental
ideal. The thought experiment in the case of INVALSI data corresponds to distribut-
ing manipulation (the treatment) across classes at random. The identification strat-
egy here amounts to the set of assumptions needed to mimic the very same
experimental ideal even if manipulation is not random. How can this be possible?

Econometrics combined with the institutional context come to the rescue. It turns
out that about 20% of primary schools in Italy are randomly assigned to external
monitors, who supervise test administration and the grading of exams from local
teachers in selected classes within the school (see Bertoni et al., 2013, and Angrist
et al., 2017, for details on the institutional context). Table 3.1 shows that monitors
are indeed assigned to schools using a lottery. Schools with monitors are statisti-
cally indistinguishable from the others along several dimensions, including average
class size and grade enrollment. For example, the table shows that the average class
size in unmonitored classes of the country is 19.812 students. The difference
between treated and control classes is as small as 0.035 students and statistically
indistinguishable from zero. Additional evidence on the lack of imbalance between
schools with and without monitors is in Angrist et al. (2017). In the next section, we
discuss how to use the monitoring randomization to learn about the effects of
manipulation on scores.

3.5.2 General Formulation of the Problem

In our example, the class is the statistical unit of analysis and the treatment is
manipulation (D; = 1 if class scores are manipulated and D; = 0 if they are honestly
reported). INVALSI has developed a procedure to reveal D, so treatment status is
observed in the data. Scores (standardized by grade, year, and subject) are the class-
level outcome,Y;. The presence of external monitors is described by a binary random
variable Z;, with Z; = 1 for classes in schools with monitors and Z; = 0 otherwise. In
the applied econometrics parlance, variables like Z—which is randomly assigned
and can influence treatment status—are called “instruments.”

The ordinary least squares (OLS) regression of Y; on D; summarizes the correla-
tion between manipulation and reported scores. Estimation results obtained from
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Table 3.1 Covariate balance in the monitoring experiment (Angrist et al., 2017)

Italy North/Center South
Control | Treatment Control | Treatment Control | Treatment
mean difference mean difference mean difference
(1) (2) (3) (4) (5) (6)
Class size 19.812 0.0348 20.031 0.0179 19.456 0.0623
[3.574] (0.0303) [3.511] (0.0374) [3.646] (0.0515)
Grade 53.119 —0.4011 49.804 —0.5477 58.483 —0.1410

enrollment at [30.663] |(0.3289) [27.562] |(0.3913) [34.437] |(0.5909)
school

% in class 0.939 0.0001 0.934 0.0006 0.947 —0.0007
sitting the test | [0.065] | (0.0005) [0.066] | (0.0006) [0.062] | (0.0008)
% in school 0.938 —0.0001 0.933 0.0005 0.946 —-0.0010
sitting the test | [0.054] | (0.0005) [0.055] | (0.0006) [0.051] | (0.0008)
% in institution | 0.937 —0.0001 0.932 0.0005 0.945 —0.0010
sitting the test | [0.045] | (0.0004) [0.043] | (0.0005) [0.045] | (0.0007)
N 140,010 87,498 52,512

Columns 1, 3, and 5 show means and standard deviations for variables listed at the left. Other
columns report coefficients from regressions of each variable on a treatment dummy (indicating
classroom monitoring), grade and year dummies, and sampling strata controls (grade enrollment at
institution, region dummies, and their interactions). Standard deviations for the control group are
in square brackets; robust standard errors are in parentheses

2p<0.01, *p<0.05, °p<0.1

OLS are reported in Table 3.2, and a positive correlation between cheating and test
score is revealed in all columns. For instance, the value of the coefficient reported
in Column (1) of Panel A implies that when we consider data for the whole of Italy,
the average math score in classes with manipulated scores is 1.414 standard devia-
tions higher than in classes where teachers did not manipulate scores.* However, as
discussed above, this result cannot be given any causal interpretation, as the samples
with D; =0 and D, = 1 are non-randomly selected.

Unlike D, the status Z; is randomly assigned. So, it is can be instructive to consider
the regression of Y; on Z;, summarizing the correlation between manipulation and mon-
itoring. As Z; is randomly assigned, the latter regression yields the causal effect of
monitoring on scores (orthodox empiricists often call this regression the “reduced form
equation”). Results in Columns (1)—(3) of Table 3.3 show a negative effect of monitor-
ing on test scores in all columns (see Bertoni et al., 2013). For example, from Column
(1) of Panel A, we learn that the average math score in schools with external monitors
is 0.112 standard deviations lower than in schools without monitors. Arguably, the
negative effect of monitoring on scores passes through a reduction of manipulation.

We need to enrich our causal inference vocabulary to consider potential out-
comes based on the 2x2 scenarios that result from the cross-tabulation of D; and
Z;: Y(D,, Z;). Similarly, we need to adjust the notation to express the idea that Z;

3Here and in what follows, INVALSI scores are standardized to have zero mean and unit variance
by subject and year.
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Table 3.2 Correlation between score manipulation and test scored

Test scores
Italy North/Center South
)] ®) 3
A. Math
Score manipulation 1.414° 1.4042 1.413°
(0.006) (0.009) (0.007)
Means 0.007 -0.074 0.141
(sd) (0.637) (0.502) (0.796)
N 139,996 87,491 52,505
B. Language
Score manipulation 1.179* 1.085* 1.213*
(0.005) (0.007) (0.006)
Means 0.01 —0.005 0.035
(sd) (0.523) (0.428) (0.649)
N 140,003 87,493 52,510

All models control for a quadratic polynomial in grade enrollment, segment dummies, and their
interactions. The unit of observation is the class. Robust standard errors, clustered on school and
grade, are shown in parentheses. Control variables include % female students, % immigrants, %
fathers at least high school graduate, % employed mothers, % unemployed mothers, % mother
NILF, grade and year dummies, and the proportions of missing values in these variables. All
regressions additionally include sampling strata controls (grade enrollment at institution, region
dummies, and their interactions). *p<0.01, *p<0.05, p<0.1

Table 3.3 Monitoring effects on test scores and score manipulation (Angrist et al., 2017)

Test scores Score manipulation
Italy North/Center | South | Italy North/Center | South
)] (@) 3 “ (&) (©)
A. Math
Monitor at institution (My,) | —0.112* | —0.075* —0.180* | —=0.029* | —0.010¢ —0.062°
(0.006) | (0.005) (0.012) |(0.002) |(0.001) (0.004)
Means 0.007 | -0.074 0.141 1 0.064 0.02 0.139
(sd) (0.637) |(0.502) (0.796) | (0.246) |(0.139) (0.346)
N 140,010 | 87,498 52,512 139,996 87,491 52,505
B. Language
Monitor at institution (Mjy,) | —0.081* | —0.054* —-0.131* | =0.025* | —0.012* —-0.047¢
(0.004) | (0.004) (0.009) |(0.002) |(0.001) (0.004)
Means 0.01 —0.005 0.035 0.055 0.023 0.11
(sd) (0.523) |(0.428) (0.649) |(0.229) | (0.149) (0.313)
N 140,010 | 87,498 52,512 | 140,003 | 87,493 52,510

Columns 1-3 report the reduced form effects of having a monitor at the institution on test scores.
Columns 4-6 show the first-stage estimates of the effect of having a monitor at the institution on
score manipulation. All models control for a quadratic polynomial in grade enrollment, segment
dummies, and their interactions. The unit of observation is the class. Robust standard errors, clus-
tered on school and grade, are shown in parentheses. Control variables include % female students,
% immigrants, % fathers at least high school graduate, % employed mothers, % unemployed moth-
ers, % mother NILF, grade and year dummies, and proportions of missing values in these variables.
All regressions additionally include sampling strata controls (grade enrollment at institution,
region dummies, and their interactions). p<0.01, *p<0.05, °p<0.1
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affects D;. We define potential treatments D;(0) and D,(1) as the treatment status that
individual i has when exposed to Z; = 0 and Z; = 1, respectively. In our running
example, the realized score Y; corresponds to the potential score realized for the
observed combination {D, = d, Z; = z}, while the realized manipulation D, coincides
with the potential manipulation realized for the observed value of Z; = z. For exam-
ple, Yi(1, 1) represents the score that would be recorded for class i if teacher grading
was dishonest (D, = 1) and the school had an INVALSI monitor (Z; = 1). Recall that,
since only selected classes within the school are monitored, dishonest behavior
from teachers in unmonitored classes within the school is always possible (see
Bertoni et al., 2013).

Depending on the values taken by D,(0) and D,(1), we can divide classes into four
groups depending on the behavior of teachers grading the exams (see Battistin et al.,
2017, for a similar approach):

* Complying dishonest teachers (C), who grade dishonestly without monitors and
grade honestly with monitors: D;(0)=1 and D,(1) = 0.

* Always dishonest teachers (A), who always grade dishonestly regardless of the
presence of monitors: Dy(0)=1 and Dy(1) = 1.

* Never dishonest teachers (), who always grade honestly regardless of the pres-
ence of monitors: D;(0)=0 and D;(1) = 0.

* Non-complying dishonest teachers (D), who grade honestly without monitors
and grade dishonestly with monitors: D;(0)=0 and Dy(1) = 1.

This classification does not hinge on any assumptions and represents the taxonomy
of all possible behavioral responses from teachers arising from the monitoring sta-
tus of the school. The fact that both D; and Z; are binary limits to four the number of
such responses.

3.5.3 Assumptions

The identification strategy for the analysis of natural experiment builds on four
assumptions. We now discuss each of them with reference to our specific running
example on the effect of manipulation on test scores. We refer the reader to Angrist
and Pischke (2008) for a more general discussion.

3.5.3.1 The “Monotonicity” Assumption

We begin our investigation by assuming lack of non-complying dishonest teachers
(D-teachers) in the data. This is a rather innocuous assumption in our context. A
violation would represent a quirky behavioral response to the presence of monitors.
This assumption is also known as monotonicity condition. It is a restriction on the
behavior of units stating that when we move the instrument Z; from 7 to 7', all agents
respond by changing their D, in the same direction or by leaving it unaltered. In our
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case, this assumption implies that (a) honest teachers without monitors at school
would be honest teachers even with a monitor and (b) dishonest teachers without
monitors at school might grade honestly under the threat of a monitor at school. In
the former case, the value of D; is unchanged by monitoring and remains zero; in the
latter case, the value of D; may remain one or turn to zero with monitoring. The
events (a) and (b) imply that the distribution of the variable D; must move toward
zero in the presence of school monitoring. Ruling out the presence of D-teachers
implies that monitors cannot change the variable D; in the opposite direction, from
zero to one. This exemplifies why the variable Z; must induce a monotone (towards
zero) behavior for all teachers.

Monotonicity plays a crucial role in natural experiments: under this assump-
tion, we are left with three compliance types—C, A, and N—whose shares in the
populations can be represented by 7, 7, 7y, respectively. Manipulators are a
mixture of always dishonest teachers (A-teachers) and complying dishonest teach-
ers (C-teachers) without monitors. Honest teachers are composed of never dishon-
est teachers (N-teachers) and complying dishonest teachers (C-teachers) with
monitors.

3.5.3.2 The “As Good as Random” Assumption

A second key relationship among the variables involved arises because schools are
randomly assigned to either Z; = 1 or Z; = 0. Because of the monitoring experiment,
the two groups of schools must have the same composition with respect to any vari-
able, including potential outcomes and potential treatment statuses. It, therefore,
follows that {Y(1, 1), Y0, 1), Y1, 0), Y0, 0), D0), D(1)} L Z. In our case, this
“as good as random” assumption holds by design, because monitors have been
explicitly assigned at random to schools.

3.5.3.3 The “Exclusion Restriction”

The causal reasoning builds upon an exclusion restriction. This formalizes the
causal construct that the effect of Z; on Y; shall be solely because of the effect of Z;
on D;. In the example considered here, this restriction can be put across considering
the following equations:

,(0.1)
Y, (11)

7,(00)

1,0).

Il
X~
—_

Therefore, the exclusion restriction implies that there are only two potential out-
comes, indexed against D;: Yi(D;). For example, the first equation implies that scores
under honest grading (D; = 0) would be the same irrespective of the presence of
monitors. Similarly, the second equation implies that dishonest grading (D; = 1)
would yield the same score independently of school monitoring. The latter
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condition would be violated if, for example, always dishonest teachers cheated dif-
ferently in the presence of external monitors at school. This possibility is discussed
in Battistin et al. (2017) and is ruled out in the case of INVALSI data by results in
Angrist et al. (2017).

3.5.3.4 The “First-Stage’” Requirement

The assumed causal link from D; to Z; can be verified in the data by running an OLS
regression of D; on Z;. In fact, it is a good practice to verify the size and statistical
strength of this “first-stage” regression in any study based on quasi-experimental
variation, as the causal chain we have in mind originates from the effect of Z; on D,.
Should we observe any effect of Z; on Y; but no effect of Z; on D,, it would be hard
to justify that the random variation in Z; affected Y; via the ability of Z; to move D..
Estimates of the “first-stage” relationship between exposure to monitors and manip-
ulation are reported in Columns (4)—(6) of Table 3.3. As expected, score manipula-
tion is less likely in schools where monitors are present. For example, Column (4)
of Panel A indicates that the probability of score manipulation is 2.9 percentage
points lower in schools of the country with monitors. This is equivalent to a 36%
decrease in the probability of manipulation with respect to the mean in non-
monitored schools (equal to 6.4%). As demonstrated by the estimates in Columns
(5) and (6) of Table 3.3, this decrease is stronger in Southern Italy than in the North
and Center of the country and strongly statistically significant.

3.5.4 Better LATE than Never

To nail down the causal effect of manipulation on scores, we proceed by comparing
the expected value of the product Y;D; for schools with and without monitors. This
product is equal to Y; for units with D; = 1 and to O for units with D; = 0. Given all
the assumptions made so far, we have that:

E(Y,D,1Z =1)=m,*E(Y, (1)1 A),
E(Y,D,1Z =0)=mn*E(Y,(1)IC)+n, +E(Y,(1)] A).

i

In the first equation, neither C-teachers or N-teachers show up, because for them
D; =0 when Z; = 1 so that ¥;D; = 0.* Because of the monotonicity assumptions, there

*A consequence of random assignment of Z; and of the exclusion restriction is that conditional on
the compliance types defined above, potential outcomes are independent of Z, that is, {Yi(1),
Yi(0)} L Z | {Di(0), Di(1)}. In fact, conditional on a given compliance type, there is a one-to-one
mapping between Z; and D;, and therefore, knowledge of Z; implies knowledge of D;.
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are no D-type teachers either. Therefore, the only group left is that of A-teachers,
whose fraction in the population is z, and for whom we always observe Y(1). In a
similar fashion, we do not see N-teachers in the second line, as for them, D; = 0
when Z; = 0. Consequently, after ruling out the presence of D-teachers by monoto-
nicity, only C- and A-teachers show up in this equation. C-teachers account for a
fraction 7z of the population, and for them, we observe Y(1) as in this case Z; = 0,
and therefore, D; = 1.

For these very same reasons, if we compare the share of manipulators in schools
with and without external monitors, we obtain:

E(D1Z =1)=m,,
E(D1Z =0)=m_+m,.

The former expression suggests that only A-teachers have D; = 1 when Z; = 1; the
latter that are both C- and A-teachers have D; = 1 when Z; = 0. Analogous expres-
sions can be derived for E(Y;(0)I C), E(Y(0)I N) and for zy if one substitutes D; with
(1 — D)) in the above. We have that:

E(Y,(1-D)1Z =1)=n*E(Y,(0)IC)+my *E(Y,(0)IN),
E(Y,(1-D,)1Z =0)=m, *E(Y,(0)IN),
E((1-D)1Z =1)=m.+m,,

E((1-D,)1Z =0)=m,.

In the first and third equation, A-teachers do not show up because they always
have D; = 1 so that Y,(1 — D,) =0 and (1 — D,) = 0.° Because of the monotonicity
assumptions, there are no D-type teachers either. Therefore, only C- and
N-teachers are left. C-teachers account for a fraction 7. of the population. Since
in this case Z; = 1, for them, we observe D; = 0 and, therefore, Y;(0). N-teachers
are a share zy of the population, as for them, D; is always equal to 0, and we
observe Y;(0).

Similarly, in the second and fourth line, we do not see A- and C-teachers, as for
them D; = 1 when Z; = 0. Consequently, after ruling out the presence of D-teachers
by monotonicity, only N-teachers are left.

A consequence of random assignment of Z; and of the exclusion restriction is that conditional on
the compliance types defined above, potential outcomes are independent of Z, that is, {Yi(1),
Yi(0)} L Z | {Di(0), Di(1)}. In fact, conditional on a given compliance type, there is a one-to-one
mapping between Z; and D;, and therefore, knowledge of Z; implies knowledge of D;.
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By rearranging the equations above, it is easy to obtain:

E(YD 1Z =1)-E(Y,D,1Z =0
E(Yl(l)|C)= (1 i i ) (1 i i ),
E(D1Z,=1)-E(D,1Z,=0) 32)
and
Y(1-D)IZ =1)-E(Y,(1-D,)1Z =0
E(Yl(o)lc): (z( l) i ) (1( ) i )
E((1-D,)1z =1)-E((1-D,)1Z =0) 33)
The difference between the last two expressions yields:
E(Y1Z =1)-E(Y,1Z, =0
E(D1Z =1)-E(D,1Z,=0) 34)

which represents the average causal effect of manipulation for classes with teachers
who graded honestly because of school monitoring (that is, classes with C-teachers).
Intuitively, this happens because—in the absence of D-teachers—this is the only
group of teachers for whom the presence/absence of monitors generates variation in
manipulation. Borrowing the definition by Angrist and Imbens (1994), the parame-
ter on the left-hand side of (3.4) is the local average treatment effect (LATE). The
word “local” here is motivated by causal conclusions only licensed for a subset of
classes in the population.

Importantly, the expression on the right-hand side of Eq. 3.4 involves only the
variables observed so that the causal parameter can be identified from the data.
Standard econometric results imply that LATE is estimated by the coefficient on D;
in a two-stage least squares (TSLS) regression of ¥; on D,, using Z; to instrument for
D..% Table 3.4 reports the estimates of the LATE parameter in our running example
and reveals that manipulation causally increased scores of students assigned to com-
plying dishonest teachers. For example, Column (1) of Panel (A) tells us that score
manipulation increases math results in classes with C-teachers by 3.827 standard
deviations. This causal effect is much larger than the naive comparison of scores by
treatment status reported in Column (1) of Panel A in Table 3.2. Why is it the case?
As illustrated in Sect. 3.2.3, the naive comparison is equal to a causal effect plus
selection bias. In this case, selection bias corresponds with the difference in average
score of manipulators and non-manipulators if manipulation was not possible at all.
As we have argued, manipulation is less likely to occur in classes with higher aver-
age true scores. So, selection bias is likely to be negative, that is, E(Y;(0)l
D;=1)<EY0) D;=0).

° A similar result applies to the expressions in (3.2) and (3.3) when TSLS regressions of ¥;D; on D;
and of Yi(1 — D;) on (1 — D), respectively, are considered.
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Table 3.4 Local average treatment effect of score manipulation on test scores

55

Test scores
Italy North/Center South
(D 2) (3)
A. Math
Score manipulation (D;g) 3.827* 7.3932 2.886*
(0.188) (0.804) (0.158)
Means 0.007 -0.074 0.141
(sd) (0.637) (0.502) (0.796)
N 139,996 87,491 52,505
B. Language
Score manipulation (Djg) 3.279% 4.5232 2.786*
(0.180) (0.456) (0.178)
Means 0.01 —0.005 0.035
(sd) (0.523) (0.428) (0.649)
N 140,003 87,493 52,510

All models control for a quadratic in grade enrollment, segment dummies, and their interactions.
The unit of observation is the class. Robust standard errors, clustered on school and grade, are
shown in parentheses. Control variables include % female students, % immigrants, % fathers at
least high school graduate, % employed mothers, % unemployed mothers, % mother NILF, grade
and year dummies, and proportions of missing values in these variables. All regressions include
sampling strata controls (grade enrollment at institution, region dummies, and their interactions).
4p<0.01, *p<0.05, °p<0.1

3.5.5 External Validity of Causal Conclusions

Causal conclusions can be drawn for classes with exams graded by C-teachers, and
TSLS yield internally valid estimates of E(Y(1) — Y;(0)l C). However, we have that
E(Y (1) = Y,(0)l C) # E(Y(1) — Y«0)) in general. It follows that that the ability to
extend causal conclusions to all classes—that is, the external validity of
E(Y(1) — Y(0)l C)—is precluded in general. Using the expressions derived in the
previous section, we can write:

n.=E(D,1Z,=0)-E(D,1Z, =1), 35)
so that the data is informative about the size of the population for whom this design
can provide evidence about a causal effect. This is already a starting point to under-
stand the extent of the external validity problem of causal estimates obtained by
LATE. In the case of INVALSI data, the value of z is equal to 2.9% for math and
2.5% for language. This can be seen from Column (4) of Table 3.3, which reports
the coefficient of Z; in the first-stage regression of D;on Z; using data for all classes



56 E. Battistin and M. Bertoni

in the country. This is equal to the opposite of zc.” In the South, the share of
C-teachers grows to 6.2% for math and 4.7% for language, as can be seen from
Column (6) of the same table.

In our example, the size of the compliant subpopulation is relatively small.
How could one extend the conclusions drawn for a possibly small share of com-
plying dishonest teachers to the remaining classes in the population? We follow
Angrist (2004) and note that the data provide information about E(Y;(1)| A) and
E(Y(0)I N) as well. These quantities can be obtained using expressions like
those we derived above (see Battistin et al., 2017, for details). For example, we
have that:

E(Y,(1)IA)=E(Y,1D, =12, =1),

E(Y,(0)IN)=E(Y,1D,=0.Z, =0).

The first equality holds because—in the absence of D-teachers—only A-teachers
manipulate scores in the presence of monitors. Similarly, only N-teachers report
honestly without monitors.

If potential outcomes were homogeneous across types in the population, then we
would have that E(Y;(1)l A) = E(Y (1)l C) and E(Y(0)| N) = E(Y;(0)I C). If these two
equalities cannot be rejected from the data, we would feel more confident about
extending the results obtained for classes with complying dishonest teachers to
other classes in the population.®

In Table 3.5, we report the comparison of E(Y,(1)I C) vis-a-vis E(Y,(1)l A) and
E(Y«(0)I ©) vis-a-vis E(Y;(0)l N) for Southern Italy, where the problem of manipu-
lation is more pervasive. While the data does not reject that E(Y;(1)l C) is equal to
E(Y«(1)I A), the empirical evidence suggests that E(Y;(0)l C) is much smaller than
E(Y«(0)I N). For instance, as reported in Panel A of Table 3.5, for math, we have
that E(Y,(1)I C) and E(Y,(1)I A) are very similar and, respectively, equal to 1.426
and 1.236 standard deviations. On the other hand, while E(Y,(0)I C) is equal to
—1.662 standard deviations, E(Y;(0)l N) is much higher and equal to —0.655 stan-
dard deviations. Therefore, in this case, the data advise against the generalization
of the LATE of manipulation on scores outside of the population of complying
dishonest teachers.

"The number reported in the table is the estimate of 7 with its sign flipped. This is because the
expression for share of C — teachers 7 is in (5).The coefficient on Z; in the regression of D; on Z;
identifies instead E(Djl Z; = 1) — E(Djl Z; = 0), that is, the opposite of 7.

$Needless to say, full homogeneity of potential outcomes across types requires also that E(Y;(1)I
N) = E(Y,(1)I C) and E(Y;(0)l A) = E(Y;(0)l C). However, the data will never reveal E(Y;(1)I N) and
E(Yi(0)I A), as we never get to observe D; = 1 for N-teachers and D; = 0 for A-teachers. Hence, the
latter two conditions cannot be tested empirically.
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Table 3.5 Average potential outcomes by type: South of Italy

Test scores
Complying dishonest (C) Always dishonest (A) Never dishonest (N)
(1) (2) 3)
A. Math
E(Y(1)) 1.426° 1.236°
(0.020) (0.119)
E(Y(0)) —1.453* —0.527¢
(0.157) (0.104)
N 52,505 52,505 52,505
B. Language
E(Y(1)) 1.147° 1.029°
(0.018) (0.103)
E(Y(0)) -1.662° —0.655*
(0.176) (0.084)
N 52,510 52,510 52,510

E(Y (1)l C) and E(Y(0)! C) are obtained from 2SLS regressions as detailed in the text. E(Y;,(1)l A)
and E(Y,(0)I N) are computed from OLS regressions that estimate E(Y| D, =1, Z;=1) and E(Y|
D; =0, Z; = 0), respectively. All models control for a quadratic in grade enrollment, segment dum-
mies, and their interactions. The unit of observation is the class. Robust standard errors, clustered
on school and grade, are shown in parentheses. Control variables include % female students, %
immigrants, % fathers at least high school graduate, % employed mothers, % unemployed moth-
ers, % mother NILF, grade and year dummies, and proportions of missing values in these variables.
All regressions include sampling strata controls (grade enrollment at institution, region dummies,
and their interactions). ®p<0.01, °p<0.05, °p<0.1

3.6 Causal Reasoning with Administrative Rules: The Case
of Regression Discontinuity Designs

3.6.1 Larger Classes, Worse Outcomes?

The benefits of reducing student—teacher ratios on learning, educational achieve-
ment, and eventually long-term labor market outcomes have been of long-standing
concern to parents, teachers, and policy-makers. Observational studies often show a
negative relationship between class size and student achievement. Yet the conclu-
sions of such studies might be subject to the problem of self-sorting of students into
smaller classes.

In many countries, class size formation depends on grade enrollment using a
deterministic rule, and Italy is no exception. As discussed in Angrist et al. (2017),
until 2008, class size in primary schools in Italy must be between 10 and 25. A
reform in 2009 modified these limits to 15 and 27, respectively. Class formation is
regulated by law, and grade enrollment above multiples of the cap to maximum size
leads to the formation of a new class. To see this, consider the cap at 25 students in
place until 2008. Schools enrolling up to 25 students must form one class. One
additional student enrolled after 25 would force principals to form one additional
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class, with an average class size of 13 students. The same idea extends to any mul-
tiple of 25 students. For example, crossing the 50-student limit is enough to form
three classes instead of two and so forth. Because of the regulation in place, class
size decreases sharply when enrollment moves from just below to just above mul-
tiples of 25. Angrist and Lavy (1999) called this relationship “Maimonides’ rule”
after the medieval scholar and sage Moses Maimonides who commented on a simi-
lar rule in the Talmud.® Exceptions to the rule in Italy are allowed in some cases. For
example, a 10% deviation from the maximum (3 students) in either direction is
possible at the discretion of school principals and upon the approval from the
Ministry of Education. The presence of students with disabilities or special educa-
tion needs is often advocated to justify non-compliance with the law. Moreover,
principals can form classes smaller than 10 students in the most remote areas of the
country.

By allowing actual class size to deviate from the class size mandated by law,
these exceptions generate fuzziness in the relationship between actual and predicted
class size. This can be seen in Fig. 3.2, where we report the average class size in the
country by grade enrollment at school for second graders before 2008.1° The
sawtooth-shaped solid line reports predicted class size as a function of enrollment,
the Maimonides’ rule, while the dots report average actual class size by enrollment.
The law predicts class size to be a non-linear and discontinuous function of enroll-
ment. Actual class size follows predicted class size closely and more so for schools
enrolling less than 75 students (which is the majority of schools in the country). In
addition, discontinuities in the actual class size/enrollment relationship show up at
multiples of 25 enrolled students. Given the soft nature of the rule, however, they are
weaker than the sharp ones observed for predicted class size.

3.6.2  Visual Interpretation

Figure 3.3 offers a visual representation of the size of these discontinuities and is
constructed using classes at schools with enrollment that falls in a [-12,12] window
around the first four cutoffs shown in Fig. 3.2. Enrollment values in each window
are centered to be zero at the relevant cutoff. The y-axis shows average class size
conditional on the centered enrollment value shown on the x-axis. The figure also
plots fitted values generated by locally linear regression (LLR) fits to class-level

?More precisely, let fi,i be the predicted class size of class i in grade g at school k in year . We have

,
that f e

e [int((rgkr —1)/cgt)+1}

k, cyis the relevant cap (25 or 27) for grade g, and inf(x) is the largest integer smaller than or
equal to x.

, Where ry is beginning-of-the-year grade enrollment at school

10Similar patterns hold also for the period after the 2008 reform and for fifth graders, as shown by
Angrist et al. (2017).
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Fig. 3.2 Class size by enrollment among second-grade students in pre-reform years (Angrist
etal., 2017). (It shows actual class size and class size as predicted by the Maimonides’ rule in pre-
reform years for second-grade students)

data, as described in Angrist et al. (2017). This representation is convenient in that
one can think that small classes are those in schools with grade enrollment to the
right of zero. The figure shows a clear drop at this value. Class size is minimized at
about 3—4 students to the right of this value, as we would expect were Maimonides’
rule to be tightly enforced.

How can we use these discontinuities in class size to assess a causal effects of
class size? School enrollment may be positively correlated with test scores, for
example, because larger schools are typically in urban areas, and this relationship
need not be linear. However, we would be tempted to infer a causal effect of class
size on test score if we observed a discontinuous change in test scores at the exact
values of enrollment that are multiples of the maximum class size caps, where class
size also discontinuously changes. This is the idea underlying the evaluation design
that goes by the name of regression discontinuity (RD).

Figure 3.4 exemplifies this idea. It reports the change in average test scores as
normalized enrollment moves from below to above the recentered enrollment cut-
offs, separately for North and Central Italy and for the South. There is evidence of a
positive discontinuity in scores as we move from below to above the cutoff in
Southern Italy. Evidence of jumps for the rest of the country is instead much more
limited, suggesting the possibility of causal effects of class size on learning mostly
for schools in the South.
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Fig. 3.3 Class size by enrollment among second-grade students, centered at the RD cutoffs
(Angrist et al., 2017). (Graphs plot residuals from a regression of class size on the following con-
trols: % female students, % immigrants, % fathers at least high school graduate, % employed
mothers, % unemployed mothers, % mother NILF, grade and year dummies, and dummies for
missing values in these variables. All regressions include sampling strata controls (grade enroll-
ment at institution, region dummies, and their interactions). The solid line shows a one-sided
LLR fit.)

The idea underlying the RD design is that the comparison of scores of classes
just above and just below the enrollment cutoffs identified by the Maimonides’
rule is informative of effects of class size. Still, not all classes above the cutoffs
are small and not all classes below are large, because of discretion in the applica-
tion of the rule. Intuitively, if compliance with the rule was perfect, then the
graphical analysis would already reveal the causal effect. If compliance is not
perfect, we may want to use the rule as an instrument for class size formation.
Intuitively, the crucial assumption here is that the Maimonides’ rule must affect
performance at school only because it affects class size formation. A juxtaposition
with the identification results discussed in Sect. 3.5 reveals that, in this case, the
causal effect of class size on learning is identified only for schools that would
form smaller classes because of compliance with the rule. We will come back to
this point later in this section.
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Fig. 3.4 Test scores by enrollment among second-grade students, centered at the RD cutoffs
(Angrist et al., 2017), (Graphs plot residuals from a regression of test scores on the following
controls: % female students, % immigrants, % fathers at least high school graduate, % employed
mothers, % unemployed mothers, % mother NILF, grade and year dummies, and proportions of
missing values in these variables. All regressions additionally include sampling strata controls
(grade enrollment at institution, region dummies, and their interactions). The solid line shows a
one-sided LLR fit.)

3.6.3 General Formulation of the Problem

Following our running example, the class is the statistical unit of analysis and the
treatment is class size.!! To ease the narrative, we distinguish between small and
large classes and move to the background the possibility of a “continuous” treat-
ment (number of students in class). Small classes will have D, = 1 and large classes
D; = 0. In our narrative, the Maimonides’ rule predicts small classes to the right of
the recentered cutoffs in Fig. 3.2. Similarly, a large class is predicted for grade
enrollment at or below the cutoffs in the same figure. Potential outcomes Y;(1) and
Y;(0) are the average test score that class i would get if it was small or large. Grade
enrollment at school of class i is ;. Without loss of generality and consistent with
Fig. 3.3, we recentered grade enrollment at zero using a [—12,12] window around
cutoffs.

3.6.3.1 The Sharp RD Design

We start our discussion by assuming full compliance of school principals with the
Maimonides’ rule. In other words, we pretend that all classes with r; at or above zero
are small and that all classes with r; below zero are large. This is equivalent to

""We will drop all indexes other than i in what follows. The data contains additional dimensions,
but we ignore them for expositional simplicity. One dimension is grade and year. However, scores
are standardized by grade and year, so we can ignore them. As a result of this normalization, we
end up having repeated measurements over time for classes at the same school. Another dimension
is the reform regime. We recenter enrollment to the right cutoff depending on the regulation in
place, and we, therefor, abstract from this dimension.
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assuming a deterministic relationship between r; and class size, which we express
using the following notation: D; = 1(r; > 0). We use this sharp setting to write the
comparison of outcomes for classes in schools with grade enrollment in a neighbor-
hood of the Maimonides’ cutoff. The notion of cutoff proximity will be exemplified
by using limits from below and above zero. Accordingly, the notation 7" =0 in

what follows should read “just above the Maimonides’ cutoff”; the notation ;- =0
is instead “just below the Maimonides’ cutoff.”
We have that:

rlilglE(Y,I r):rlilg}E(Z(O)l : )+r1iré]E(D (Yl(l)—Yi(O))lrlzr)
= lirg; EY,(0)Ir, =r),

because in classes to the left of the Maimonides’ cutoff D; is zero so that the second
term vanishes. For classes with r; above zero, we have:

lim E(Y, 11, =r)= lim E(Y,(0) 11, =r)+ lim E(D, (¥,(1)~,(0)) 1, =7).
= lim E(Y,(0) 17, =r)+ lim EY, (1)-,(0) 11, =r),

because D, is one deterministically. It follows that the outcome difference between
small and large classes at the cutoff can be written as:

lim E(Y, |5, =r)— lim E(Y, 17, =r) = lim E(Y,(1)-Y,(0) 11, =r)

i

r—>0* r—0 r—0"
+rlirg+1 E( (O)Ir —r)—rlirg} E(K (O)Irl. :r).

The parallel with the naive comparison discussed in Eq. 3.1 is striking: the com-
parison of outcomes for small (" =0) and large (7 =0) classes is equal to a
causal effect for units just to the right of 7, =0

lim E(Y, (1)-Y,(0) 17, =7),

r—>0"

plus a selection bias term:

lim E(Y,(0) 17, =r)—lim E(Y,(0)17, =r),

r—0" r—0"

measuring differences in a local neighborhood of r; = 0 that would have occurred
even without treatment (i.e., if class size could be only large). What conditions are
needed to ensure that the latter term is zero? A closer look at the two terms in the
last expression reveals an idea of continuity. The condition:
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lim E(Y,(0)lr, =r)= lim E(Y, lr=r),
lim E(¥,(0)17; =r) = lim EQY, (0) 17, = (3.6)

is sufficient to eliminate selection bias and is equivalent to assuming that the relation-
ship between the outcome Y;(0) and grade enrollment is continuous at r; = 0. This is a
mild regularity condition, which most likely holds in most applications, and has a very
simple interpretation: our hopes to give any causal interpretation to discontinuities in
school performance observed around Maimonides’ cutoffs must rest on the assump-
tion that there would have been no discontinuity in performance crossing from r; =0
over to 1" =0 had the Maimonides’ rule been irrelevant for forming a small class.
Assumption (3.6) combined with its counterpart for the Y(1) outcome:

lim E\Y, (1)1r, =r)=1m ECX, (1)1, =r),
lim E(Y, (1)1, =r) = lim EQ; (1) 11, = 3.7)

ensures:

lim E(Y, I, =r)-lim E(Y, | E(Y.(1)=-Y.(0)lr.=0).
B EQ =)l EOL 17 =)< E(1 ()1 0)15=0).

Assumption (3.7) brings to the problem the same regularity condition in (3.6),
with a similar interpretation.

The notion of continuity of potential outcomes around Maimonides’ cutoffs is
evocative of the properties of a full randomization of students to small and large
classes in schools with grade enrollment near r; = 0. For example, assumption (3.6)
can be interpreted as an independence condition between Y;(0) and D; locally with
respect to the Maimonides’ cutoff. This is the same sort of condition that we dis-
cussed in Sect. 3.4 above. It follows that the internal validity of RD estimates
obtained from (3.8) hinges upon the assumption that students in schools with values
of r; near zero are as good as randomly assigned to small and large classes, as in a
local randomized experiment. In Sect. 3.6.4 below, we discuss how potential viola-
tions of such condition may arise in practice and propose some tests to assess the
plausibility of this assumption.

Compared to a standard randomized experiment, we pay a price in terms of
external validity, as RD estimates are internally valid only around Maimonides’
cutoffs. The extrapolation of this effect away from the cutoff requires further
assumptions about the global shape of the potential outcome functions, that must be
discussed on a case-by-case basis. We refer the interested reader to the work by
Battistin and Rettore (2008), Angrist and Rokkanen (2015), Dong and Lewbel
(2015), and Bertanha and Imbens (2020).

RD estimates of causal effects are obtained from the sample analogue of the
expression in (3.8).!2 The simplest way to proceed is by comparing the mean sample
outcomes for small and large classes within a fixed distance from the Maimonides’
cutoff r;, = 0. The simplicity of this estimator is very appealing, but we may

2T ee and Lemieux (2010) provide a thorough discussion of estimation issues in RD designs. We
refer the interested reader to their survey for additional details.
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encounter statistical validity issues if the data are “sparse” around the Maimonides’
cutoff. In fact, we face a trade-off. On the one hand, to enhance statistical validity,
we would be tempted to enlarge the width of the neighborhood around the
Maimonides’ cutoff considered for estimation. On the other hand, by so doing, we
would end up using also data points far away from the cutoff. If the relationship
between Y; and r; was not flat, this could endanger the internal validity of the design.

To minimize this trade-off, researchers often rely on semi-parametric estimators.
Kernel-weighted local regressions of the outcome on a low-order (linear or qua-
dratic) polynomial in r; estimated separately for classes to the left and to the right of
r; are the most common option (as in Fig. 3.4). By giving a larger weight to data
point that are closer to the cutoff and allowing for a non-flat relationship between
test scores and enrollment, this estimator permits to enlarge sample size while main-
taining internal validity. A flexible parametric regression of Y; and r; that uses all the
available data could also be an option when sample size is small, but this may raise
additional issues if high-order polynomials are adopted (see Gelman & Imbens,
2019).

3.6.3.2 The Fuzzy RD Design

When compliance with the Maimonides’ rule is far from perfect, as in Italian pri-
mary schools, the sharp setting described in the previous section no longer applies.
The fuzziness introduced by non-compliance can be dealt with using the class size
predicted from the Maimonides’ rule as an instrumental variable for the actual class
size. The key assumption underlying this approach is that the regulation on class
size formation must influence standardized tests only because the regulation affects
how classes are eventually formed. This is, once again, an exclusion restriction of
the form discussed in Sect. 3.5.3.3, above.

A few refinements of this idea are needed in this setting because the Maimonides’
rule yields experimental-like variation only near r; = 0, implying that the “as good
as random” condition in Sect. 3.5.3.2 must hold only locally with respect to this
point. Complying classes here are those turning small because of compliance with
the class size regulation when grade enrollment crosses from »~ =0 overto " =0
(see Sect. 3.5.3.1). Moreover, the first-stage condition, which ensures that the
Maimonides’ rule shapes—at least in part—the way classes in Italy are eventually
formed stems from the following contrast:

lim E(D. lr,=r)=lim E(D. |r, =r).
r—0" ( o ) r—0" ( b ) (3.9)

Eq. 3.9 compares the share of small classes just above and just below the
Maimonides’ cutoff r; = 0. Contrary to the case of a sharp RD, where this contrast
is one because of full compliance, fuzziness arising from it makes this quantity
lower than one depending on the number of complying classes. The more severe is
the extent of non-compliance, the lower will be the external validity of the causal
conclusions, as we discussed in Sect. 3.5.5.
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The same argument used in Sect. 3.5 extends to the case considered here and can
be used to write:

lim E(Y,1r=0)-lim E(Y,|r=0)

E[Y (1)=Y,(0)IC, r=0] =22 2 :
[x(1)-%.(0)1€. r=0] lim E(D, |7 =0)-lim E(D, |7 =0)
0" r—>0" (3, 1 O)

The expression in Eq. 3.10 reveals that a causal effect is retrieved by the ratio of
the discontinuities in the outcome and in the treatment probability at the Maimonides’
cutoff. This expression bears strong similarities with Eq. 3.4 above, once we assign
the role played by the instrumental variable to a dummy for being above the
Maimonides’ cutoff, Z; = 1(r; > 0). In fact, Hahn et al. (2001) showed that non-
compliance leads the fuzzy RD design to be informative about a local average treat-
ment effect, strengthening this similarity. However, the parameter uncovered by the
fuzzy RD is local in two senses. First, it refers only to complying classes. Second,
it yields causal conclusions only about classes with a value of r; close to 0, limiting
external validity even further.

Following the analogy to the instrumental variable case, discussed in Sect. 3.5,
estimation of fuzzy RD effects is usually carried out using two-stage least square
(TSLS) methods. The general idea is to instrument the treatment dummy D; with the
dummy Z; = 1(r; > 0). As in the sharp RD case, researchers can choose to model the
relationship between test scores and enrollment using either parsimonious local
regressions or flexible global polynomial regressions. In general, and unlike in the
sharp RD case, a single TSLS regression is estimated using data on both sides of the
cutoff but permitting the polynomial in r; to have a different shape on each side of
the cutoff. This is done by including interaction terms between the polynomial in r;
and D; that are instrumented by interaction terms between the polynomial in 7;
and Z.13

The estimated fuzzy RD effects of class size on test scores for our running exam-
ple are reported in Table 3.6 and show a negative and significant effect of class size
reduction for compliers at the relevant discontinuity cutoffs. For simplicity, these
are obtained using continuous class size. For instance, according to the estimates
reported in Column (1) of Panel A, when we consider data for the whole of Italy, we
estimate that math scores would increase by an average of 0.06 standard deviations
if we decreased class size by 1 unit. As revealed by Columns (2) and (3) and in
accordance with Fig. 3.4, the magnitude of such effect is much larger in Southern
Italy than in the rest of the country.

B Further details about estimation in the fuzzy RD design are discussed in Lee and Lemieux
(2010a, b).
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Table 3.6 Local average treatment effect of class size on test scores (Angrist et al., 2017)

Test scores
Italy North/Center South
)] ) 3
A. Math
Class size —0.0609* —0.0417* —0.12942
(0.0196) (0.0171) (0.0507)
N 140,010 87,498 52,512
B. Language
Class size —0.0409* —0.0215 —0.0937°
(0.0155) (0.0136) (0.0403)
N 140,010 87,498 52,512

The table reports 2SLS estimates using class size cutoffs as an instrument. All models control for
a quadratic in grade enrollment, segment dummies, and their interactions. The unit of observation
is the class. Class size coefficients show the effect of 10 students. Robust standard errors, clustered
on school and grade, are shown in parentheses. Control variables include % female students, %
immigrants, % fathers at least high school graduate, % employed mothers, % unemployed moth-
ers, % mother NILF, grade and year dummies, and dummies for missing values. All regressions
include sampling strata controls (grade enrollment at institution, region dummies, and their inter-
actions). *p<0.01, *p<0.05, °p<0.1

3.6.4 Validating the Internal Validity of the Design

An underlying assumption behind the approach discussed so far is that units cannot
precisely manipulate their value of the running variable. For instance, suppose that par-
ents of pupils with above-average ability could perfectly predict enrollment by school
and choose to apply only for schools where enrollment is locally above the relevant
cutoffs so that their pupils would systematically end up in smaller classes.'* If this was
the case, then the RD design would be invalid, as the ability composition of pupils in
schools where enrollment is just above and just below the cutoff would be different.

In general, if units cannot precisely manipulate their value of the score, there
should be no systematic differences between units with similar values of the score.
Therefore, a test for the internal validity of an RD design is to verify whether there
are discontinuities in these covariates at the cutoff. If predetermined variables that
correlate with the outcome are discontinuous at the cutoff, then continuity of poten-
tial outcomes is unlikely to hold. These tests are akin to the “balancing” tests pre-
sented for the pure randomization case but are carried out locally, at the cutoff.

Table 3.7 reports results for these tests and shows precisely estimated zero effects
of passing the RD cutoffs on some predetermined controls, such as the share of
students present in class on the day of the test, supporting the validity of this RD
design.

“For instance, Urquiola and Verhoogen (2009) show evidence of discontinuities between enroll-
ment and household characteristics in Chilean private schools.
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Table 3.7 Covariate balance for class size discontinuities (Angrist et al., 2017)

Italy North/Center South

Control | Treatment Control | Treatment Control | Treatment

mean difference mean difference mean difference

(1) (2) (3) 4) (5) (6)
% in class 0.9392 0.0000 0.9345 0.0001 0.9471 0.0000
sitting the test | [0.0643] | (0.0001) [0.0657] | (0.0001) [0.061] | (0.0001)
% in school 0.9386 0.0001 0.9339 0.0001 0.9464 0.0001
sitting the test | [0.0534] | (0.0001) [0.0548] | (0.0001) [0.05] | (0.0001)
% in institution | 0.9374 —0.0001 0.9327 —0.0001 0.9451 —0.0000
sitting the test | [0.0436] | (0.0001) [0.0426] | (0.0001) [0.0441] | (0.0001)

N 140,010 87,498 52,512

Columns 1, 3, and 5 show means and standard deviations for variables listed at the left. Other
columns report coefficients from regressions of each variable on predicted class size, a quadratic
in grade enrollment, segment dummies and their interactions, grade and year dummies, and sam-
pling strata controls (grade enrollment at institution, region dummies, and their interactions).
Standard deviations for the control group are in square brackets; robust standard errors are in
parentheses. *p<0.01, *p<0.05, °p<0.1

3.7 Conclusion

This chapter has discussed a selected number of approaches among the most popu-
lar in the toolbox of good empiricists interested in causal relationships.
Randomization, instrumental variation, and discontinuity designs are very closely
related members of the same family and, when properly implemented, are thought
to yield the most credible estimates of the causal effects of public interventions.

The beauty of randomized assignment is that the composition of “treatment” and
“control” groups is by design not driven by any form of selection. In this case, dif-
ferences in the composition of groups due to sampling variation tend to vanish as
sample size increases so that the main concern should be the one of statistical valid-
ity. External validity and general equilibrium effects may also be a concern, espe-
cially if the intervention has to be implemented in different contexts or scaled up to
cover a whole country.

Instrumental variation is a good way to go when randomized assignment is not
viable. It seeks sources of random variation that have affected indirectly the chance
of receiving “treatment.” Clearly, a good source of variability must affect only the
treatment assignment and, through this, the outcome of interest. Sources of external
random variation affecting at the same time both treatment allocation and the out-
come will not allow to distinguish the effect of the instrument on the outcome from
the effect of the treatment on the same outcome. As we have made clear, the price to
pay for the lack of randomized assignment to treatment is external validity: esti-
mates of causal effects obtained from instrumental variation are limited to the frac-
tion of the population changing the treatment status because of the instrument. How
large and comparable this fraction is with respect to the entire population is an
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Fig. 3.5 Score manipulation by enrollment among second-grade students, centered at the RD
cutoffs (Angrist et al., 2017). (Graphs plot residuals from a regression of test scores on the follow-
ing controls: % female students, % immigrants, % fathers at least high school graduate, %
employed mothers, % unemployed mothers, % mother NILF, grade and year dummies, and pro-
portions of missing values in these variables. All regressions additionally include sampling strata
controls (grade enrollment at institution, region dummies, and their interactions). The solid line
shows a one-sided LLR fit)

empirical matter, which should be discussed on a case-by-case basis. We have dis-
cussed some test for homogeneity of potential outcomes that allow to extend valid-
ity to the whole population of interest.

Finally, the idea of regression discontinuity is most easily put across by thinking
of a properly conducted randomization only locally with respect to the discontinuity
cutoff. The pros are clear-cut, and the cons concern the external validity of the esti-
mates away from the relevant discontinuity.

What else could possibly go wrong? Books and chapters like this are always
written to show a path forward for the implementation of methods. The day-to-day
experience as a researcher is way more intricate. For example, Figure 3.5 taken from
Angrist et al. (2017) casts doubt on the validity of the assumptions used in our dis-
cussion on the effects of class size. It shows that score manipulation also changes
discontinuously at r; = 0 in Southern Italy, suggesting that teachers in small classes
are more likely to manipulate scores. As a result, the alleged causal effect of class
size on test scores in Southern Italy discussed above does not reflect more learning
in smaller classes, but increased manipulation of scores in smaller classes. As dis-
cussed by Angrist et al. (2017), these findings show how class size effects can be
misleading even where internal validity is probably not an issue.

This example should prompt the reader to weigh methods with a grain of salt and
a proactive attitude: the most credible approach to causal inference is often a com-
bination of different identification strategies, and its credibility must stem from the
institutional context under investigation rather than clueless statistical assumptions.

Review Questions

1. Why is the naive comparison of mean outcomes for treated and control subjects
not always informative of a causal effect?
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2. What are the differences between internal, external, and statistical validity of a

research design?

How does random assignment of the treatment help to achieve internal validity?

4. Under which assumptions do natural experiments and discontinuities provide a
feasible avenue to estimate causal relationships?

5. What is the price to pay in terms of validity when pursuing these empirical strat-
egies with respect to a proper randomization?

(O8]

Replication Material
Access to data and codes is available from the American Economic Association
website at: https://www.aeaweb.org/articles?id=10.1257/app.20160267
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Chapter 4

Correlation Is Not Causation, Yet...
Matching and Weighting for Better
Counterfactuals

Fedra Negri

Abstract Anyone who has attended a statistics class has heard the old adage “cor-
relation does not imply causation,” usually followed by a series of hilarious graphs
showing spurious correlations. Even if we strongly agree with it, this reminder has
been taken a little too far: it is repeated like a mantra to criticize every observational
study as being unable to detect causation behind statistical association. This chapter
helps the reader go beyond the mantra, firstly, by explaining that “correlation does
not imply causation” in observational studies because of selection bias (i.e. the com-
position of treatment and control groups follows a non-random selection) and para-
metric model dependence. Then, it introduces readers to weighting and matching
techniques, smart statistical tools for reducing imbalance in the empirical distribu-
tion of pretreatment covariates between the treatment and control groups. Lastly, it
provides an empirical illustration by focusing on two powerful algorithms: the
entropy balancing (EB) and the coarsened exact matching (CEM). The chapter ends
with caveats.

Learning Objectives
After studying this chapter, you should be able to:

e Understand under which assumptions correlation unveils causation in observa-
tional studies.

e Understand the inferential logic behind the commonest propensity score match-
ing procedures and their key implementation steps.

e Understand the logical and computational problems related to the so-called “pro-
pensity score tautology”.

e Grasp the theoretical and computational improvements introduced by entropy
balancing and coarsened exact matching, respectively.
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* Generate well-balanced samples on the statistical software Stata through the
ebalance and the cem algorithms.

* Openly discuss the necessary conditions for their inferences on observational
data to justify a causal interpretation.

4.1 Introduction

The very first notion almost everyone learns in their introductory statistics classes is
that “correlation does not imply causation.” Usually, students are presented with
several examples of spurious correlations to stress that just because two variables
move in tandem, this does not necessarily signal a causal relationship between
them. A typical example is the negative and statistically significant correlation
between final college grades and the amount of time students spend studying
(Atkinson et al., 1996), and a number of funny graphs are available online (see:
www.tylervigen.com).

Let us put it clearly: we strongly agree that “correlation does not imply causa-
tion.” However, we also think that in the everyday practice of statistics and espe-
cially statistics teaching, the message this sentence carries has been taken a little too
far and beyond its scope. In fact, it is repeated like a mantra, to criticize every
observational study as being unable to detect causation behind statistical associa-
tion. The warning “correlation does not imply causation” has made many social
scientists feel so uncomfortable with causal inference that they even try to avoid
causal language (King et al., 1994: 75-76). Terms such as “effect” or “impact” and
verbs such as “to determine” or “to shape” are routinely avoided in scientific publi-
cations and replaced by the calculatedly ambiguous “association” and “link” and
“to increase/to decrease” (Herndn, 2018).

Here, two related points should be stressed. First, while “correlation does not
imply causation” for sure, “causation does imply correlation”: if two variables are
causally related, a change in one has to trigger a change in the other (Cook &
Campbell, 1979; Miles & Shevlin, 2001: 113). Second, even when a statistical asso-
ciation, such as a regression coefficient, supports our preexisting views, theoretical
claims, or a scenario we wish to be true (the so-called confirmation bias), uncer-
tainty about causal inference will never be completely eliminated in observational
studies. Thus, a statistical association is a non-sufficient, but still necessary, condi-
tion to make a causal claim. This means that we should not give up. Rather, we
should provide the reader with the best and most honest estimate of the uncertainty
of our causal claims (King et al., 1994: 75-76).

The chapter is structured as follows. Section 4.2 explains why “correlation does
not imply causation” in observational studies, i.e. because of selection bias and
model dependence. Section 4.3 introduces the reader to matching procedures, smart
statistical tools that adjust for composition to correct for selection bias due to
observable characteristics (Chap. 3, Sect. 3.2.5 and 3.2.6, provides a more general
discussion on selection bias given by unobservable factors). In detail, this section
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reviews and simplifies for the reader the latest contributions in the matching litera-
ture to emphasize both strengths and limitations of these techniques. Section 4.4
provides an application using the statistical software Stata by describing the algo-
rithms developed by Heinmueller (2012), Iacus et al. (2009, 2011, 2012, 2019).
Some caveats complete the chapter.

4.2 Not Just a Mantra: Correlation Is Not
Causation Because...

4.2.1 Causal Inference Entails an Identification Problem

Causal inference (i.e. the process by which we make claims about causal relation-
ships) can be thought of as an identification problem. Informally, a parameter is
identified in a model if it is theoretically possible to learn its true value with an
infinite number of observations (Matzkin, 2007: section 3.1). An identification
problem arises when we do not have enough information to learn the true value of
that parameter even if the sample is infinite (Manski, 1995).

The potential outcomes framework (Rubin, 1974; Holland, 1986) formalizes the
causal inference identification problem and labels it as the “fundamental problem of
causal inference.” As discussed at length in Chap. 3 (see Sects. 3.2.2 and 3.2.3 for
details), in the potential outcome framework, each unit i has two potential outcomes,
Y,(1) if unit i is treated (D; = 1) and Y,(0) if unit i is untreated (D; = 0), but only one
actual outcome, which depends on the actual treatment that unit i receives. Thus, the
unit-level treatment effect, A, = Y;(1) — Y,(0), is impossible to estimate because one
of the two potential outcomes cannot be identified for each unit: for treated units, we
observe Y; = Y(1) only; for control units, we observe Y; = Y;(0) only.

Usually, we focus on the average treatment effect (ATE), which is the difference
in the pair of potential outcomes averaged over the entire population of interest:
ATE = E(Y(1) — Y(0)). Frequently, the ATE is defined for the subpopulation exposed
to the treatment, the average treatment effect for the treated (ATT):
ATT = E(Y(1) — Y(0)I D, = 1). Analogously, the average treatment effect for the
non-treated (ATNT) is given by: ATNT = E(Y(1) — Y,(0)l D; =0).

However, moving from the unit-level treatment effect to the average treatment
effects for the treated (ATT) or the non-treated (ATNT) does not solve our initial
causal inference identification problem. Indeed, as regards the ATT, no additional
amount of data will allow us to observe the average outcome under control for those
units in the treatment condition, E(Yi(0)ID; = 1). Moving to the ATNT, no additional
amount of data will allow us to observe the average outcome under treatment for
those units in the control condition, E(Y;(1)| D; = 0). The advanced reader may find
a more formalized discussion in Keele (2015: 314-318).

Thus, the potential outcomes framework helps us in understanding that causal
inference entails an unavoidable identification problem. Since no additional data
can help us in solving this problem, we need to find a credible identification strategy.
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4.2.2 Each Identification Strategy Entails a Set of Assumptions

An identification strategy is a research design and entails a set of assumptions,
whose plausibility critically depends on the empirical context and should be dis-
cussed on a case-by-case basis (Angrist & Pischke, 2009; Morgan & Winship,
2014). The plausibility of some assumptions is testable. Think, for example, of the
degree of compliance with the treatment assignment in a randomized experiment or
to the first-stage requirement in a natural experiment with instrumental variation
(see Chap. 3, Sect. 3.5.3.4, for details). Unfortunately, this is not always the case:
untestable assumptions are unavoidable in causal inference. This is why reasoning
about the plausibility of the assumptions entailed by the research design the
researcher has chosen is a crucial preliminary step for social scientists aiming at
detecting causal effects. This step precedes data collection and statistical analysis
and often involves qualitative information about the institutional and empirical con-
text (Keele, 2015: 323-324).

In what follows, we summarize the assumptions needed for statistical estimates
to be given a causal interpretation under different research designs. Chapter 3 has
already described three common research designs: randomized experiments, where
treatment assignment is random, and quasi-experiments providing convincing sub-
stitutes to randomization, namely, instrumental variation and regression discontinu-
ity designs (see Chap. 3, Sect. 3.5 and 3.6, for details).

Ideally, randomized experiments can achieve valid and relatively straightforward
causal inferences if three requirements are met: (1) random selection of units to be
observed from a given population, (2) random assignment of values of the treatment
to each observed unit, and (3) large sample size. Random selection (1) avoids selec-
tion bias by guaranteeing that the probability of selection from a given population is
related to the potential outcomes only by random chance. Combining random selec-
tion (1) with large sample size (3) guarantees that the chance that something will go
wrong is extremely small. Random assignment (2) guarantees the absence of omit-
ted variable bias even without any control variables included. Here, too, random
assignment (2) plus large sample size (3) minimizes the chance of omitted variable
bias (Ho et al., 2007: 205-206; see also Chap. 3, Sect. 3.4, for details).

However, social science research usually uses observational data that do not
meet all of the three requirements. For example, survey research guarantees large
sample size (3), but it is becoming more and more difficult to randomly select
respondents due to increasing nonresponse rates (1), and it is almost impossible to
fulfil random assignment requirement (2).

When dealing with observational data, a key further assumption is needed for
statistical estimates to be given a causal interpretation: the so-called “selection on
observables” assumption (Barnow et al., 1980; Heckman & Robb, 1985). Informally,
the researcher has to assume that there is a set of covariates X; such that treatment
assignment D; is random conditional on these covariates. This assumption is non-
refutable because it cannot be verified with observed data (Manski, 2007).
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This assumption has a number of different names. In econometrics, it is also
known as “no omitted variable bias,” to emphasize that the model specification must
include all the variables that are causally prior to the treatment assignment D, that
are empirically related to D;, and that affect the observed potential outcome Y;, con-
ditional on D; (Goldberger, 1991; King et al., 1994: 76-82). Remember that only
random assignment guarantees that D; is independent of any X;, whether measured
or not, except by random chance (see Chap. 3, Sect. 3.4).

In statistics, the same assumption is known as “ignorability,” to underline that the
treatment assignment D; and the unobserved potential outcomes are independent
after conditioning on a set of covariates X; and the observed potential outcomes so
that there are no unobserved factors capable of biasing our estimates (Rubin, 1978).
Alternative labels are the “absence of unmeasured confounding” or “conditional
independence assumption.”

Whatever the name, “selection on observables is a very strong assumption [...].
Generally, selection on observables needs to be combined with a number of differ-
ent design elements before it becomes credible” (Keele, 2015: 322). Indeed, even
admitting that the researcher has in mind the list of “correct” covariates to be incor-
porated in the model specification to meet this assumption, (1) additional data col-
lection may be expensive and onerous, and (2) long model specifications increase
the likelihood of incurring into over or bad control (Angrist & Pischke, 2009: 69).
Problem (2) arises when we include in the model specification posttreatment covari-
ates. In an experimental setting, it is quite easy to identify pretreatment and post-
treatment covariates. With observational data, things get harder. Think, for example,
about the items of a survey: if we exclude respondents’ exogenous characteristics
such as age, gender, citizenship, or parental level of education, it may be hard to
state for sure that a covariate is “truly” pretreatment, and thus, it is not a conse-
quence of D;. Note that a further complication, known as the “M-bias” (Pearl, 2009a,
b) will be discussed at length in Chap. 6.

This section aims to make it clear that there is no easy way-out and there is no
magic. The identification problem cannot be solved by simply looking at data.
Rather, we need to resort to identification strategies and each of them rests on a
series of assumptions. When the data are observational, a very strong assumption is
added to the list: the “selection on observables” one. This is the reason why “cor-
relation [per se] does not imply causation.” However, this is not the end of the story:
selection on observables can be combined with statistical tools to boost its credibil-
ity (Keele, 2015).

4.2.3 Last but not Least: Model Dependence

Of course, any specific statistical tool we choose to boost the credibility of our iden-
tification strategy will make additional assumptions (Ho et al., 2007: 2010-2011).
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Let us be honest: as social and political scientists, we usually spend a con-
siderable amount of time in collecting, merging, cleaning, and recoding raw
data. Then, we finally load our data set into our favorite statistical software
and run several model specifications by using the parametric statistical tech-
nique that best fits our data (e.g., OLS, discrete choice models, duration mod-
els, etc.).

The main problem with this common procedure is that all parametric methods
assume that we know the “right” model specification before looking at the esti-
mates. A model is “right” if it is (a really good approximation to) the data-generating
process. Otherwise, the model will miss important aspects of reality and inference
will be systematically wrong or overly precise.

Instead, what happens in everyday research is that we start from a generic model
specification suggested by our theoretical framework, previous works, or common
sense, and then, we modify it by adding or removing control variables and interac-
tion terms, changing the operationalization of some variables or the functional form,
restricting the sample, etc.

Following this inductive procedure, we end up with several alternative estimates
of the statistical relationship between our variable of interest and the dependent
variable. However, to improve readability, we typically choose no more than ten
model specifications to be included in our written work. This choice, made after
looking at the estimates, entails methodological and ethical dilemmas. Moreover, it
forces us to convince the readers (and the reviewers) that we have picked up the
“right” specifications, not simply the ones that most supported our starting
hypotheses.

Thus, even if rarely admitted, correlation also does not imply causation in obser-
vational studies because effect estimates may be model dependent, at least to some
degree (Ho et al., 2007).

4.3 Preprocessing Data with Matching to Improve
the Credibility of the Estimates

Imagine we want to estimate the effect of a policy in situations when controlled
randomization is unfeasible, unethical, or politically sensitive and there are no con-
vincing natural experiments providing a substitute for randomization such as the
ones described in Chap. 3, Sects. 3.5 and 3.6 (i.e., instrumental variation and RDD).
In these situations, matching may be a powerful non-parametric technique for
boosting the credibility of the estimates. It is grounded on the idea that some serious
statistical problems (i.e. model dependence, estimation error, and bias) can be
downplayed by dropping heterogeneous observations from the raw data and thus
limiting inferences to a carefully selected subsample.
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4.3.1 No Magic: What Matching Can and Cannot Do

Before addressing any technicality, we want to stress a key point about matching. It
is not a method of estimation of causal effects, it is “only” a non-parametric statisti-
cal tool for preprocessing raw data so that the treatment group becomes as similar
as possible to the control group on a set of covariates chosen by the researcher
(Arceneaux et al., 2006; Sekhon, 2009). Once treated units have been matched with
control ones according to one among the available matching procedures, some
method of estimation is needed to obtain an estimate of the causal effect. If the treat-
ment and control groups are exactly balanced on the set of covariates chosen by the
researcher (i.e. if the treatment and control covariate distributions are the same),
then the method of estimation can credibly be a simple difference in means between
the outcomes of the two groups. However, if the two groups are not exactly balanced
(i.e. if there are still systematic differences between them, as usually happens), then
the researcher has to further adjust the matched sample by using the parametric
model they would have used anyway (e.g., Ho et al., 2007; Iacus et al., 2019). Thus,
matching is just a convincing way to select the observations on which some meth-
ods of estimation should be later applied (with their own additional assumptions).

Exactly as when we interpret the coefficient of a multivariate regression model
as a causal effect, matching procedures are grounded on the strong assumption of
selection on observables. This means that it should be theoretically plausible that
selection into treatment is completely determined by a set of covariates X; that can
be observed by the researcher such that conditioning on X;, the assignment to treat-
ment is as good as random. To put it differently, it should be theoretically plausible
that there are not additional unobservable variables capable of pushing units into
treatment.’

'Given that both matching and regression are based on the selection on observables assumption,
the reader may wonder whether matching is really different from a regression with properly identi-
fied control variables. This question is the object of a heated debate among methodologists. Some
maintained that both regression and matching are control strategies, and therefore, the differences
between the two are unlikely to be of major empirical importance (Angrist & Pischke, 2009: sec-
tion 3.3.1). Others have pointed out shortcomings of regression relative to matching: Dehejia and
Wahba (1999), for example, found that propensity score matching procedures have more closely
approximate results from a randomized experiment than regression alone. Further, some have
underlined that regression is a parametric approach imposing a global linear relationship between
Xs and Y and that it uses all the available observations, thereby involving a certain amount of
extrapolation, while matching is a non-parametric approach that discards observations for which a
reasonably close match cannot be found (Martini & Sisti, 2009: 221-225). Others have stated that
matching involves several choices in its implementation, which could lead to subjectivity in the
results. According to Imbens and Wooldridge, “the best practice is to combine linear regression
with either propensity score or matching methods” (2008: 19-20) as in this way, the estimated
effect will explicitly rely on local, rather than global, linear approximations to the regression func-
tion. Even though adjudicating between these views is beyond the scope of this chapter, the appli-
cation discussed in Sect. 4.4 embraces this last suggestion and thus combines the CEM algorithm
with OLS regression.
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However, compared to regression, preprocessing raw data with matching elimi-
nates, or at least reduces, the selection bias due to the set of covariates chosen by the
researcher, which renders any subsequent parametric adjustment either irrelevant (if
balance is fully achieved) or less important (if balance is partially achieved). To put
it simply, given the plausibility of the selection on observables assumption, prepro-
cessing data with matching makes causal effect estimates based on the subsequent
parametric analyses far less dependent on modeling choices and specifications.
Quoting Ho et al. (2007: 233): “Analysts using preprocessing have two chances to
get their analyses right, in that if either the matching procedure or the subsequent
parametric analysis is specified correctly (and even if one of the two is incorrectly
specified), causal estimates will still be consistent” (on this, see also Robins &
Rotnitzky, 2001). Moreover, it has been proved that when matching is applied care-
fully so that n is not much smaller in the matched sample than in the original sam-
ple, it leads to a reduction in both bias and variance of estimates from subsequent
parametric analyses (Rubin & Thomas, 1996; Imai & van Dyk, 2004).

4.3.2 Useful Starting Point: Exact Matching

Let us formalize the selection on observables assumption. Remember that we aim to
estimate the average treatment effect for the treated: ATT = E(Y,(1) — Y(0)| D; = 1).
Unfortunately, we do not observe the average outcome under control for those units
in the treatment condition, E(Yi(0)ID; = 1). Instead, we observe the average outcome
under control for those units in the control condition, £(Yi(0)ID; = 0). As discussed
in Chap. 3, Sect. 3.2.3, a naive comparison of outcomes by treatment status provides
a biased estimate of the ATT:

(1D=)( 0)ID, =0)=
Y,(0)ID

1
E(¥,(1)-%,(0)1 D, =1)+[E(¥, (0)1 D, =1)- E(¥,(0)1 D, =0)

The first term on the right-hand side of the equation is the ATT (the quantity we are
interested in); the second term is the sample selection bias that accounts for the dif-
ferences in outcome under control between treated and control units. We already
know that only if the three requirements of an ideal RCT are met (i.e. (1) random
selection, (2) random treatment assignment, and (3) large sample size), the sample
selection bias is zero, and thus, the naive comparison of outcomes by treatment
status provides an unbiased estimate of the ATT.

Now, let X; be a set of pretreatment covariates. The selection of the set of covari-
ates X; by the researcher is a critical step. According to the usual rules for avoiding
omitted variable bias, X; should include all variables that affect both the treatment
assignment D; and, controlling for the treatment, the dependent variable Y (this does
not mean that every available pretreatment variable should be included in X; because
it will reduce efficiency). However, to avoid a “posttreatment bias” (King & Zeng,
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2007), variables that may be even remotely consequences of the treatment variable
should never be included in X; (Cox, 1958: section 4.2; Rosenbaum, 1984;
Rosenbaum, 2002: 73-4).

According to the selection on observables assumption, once we condition on X,
assignment to treatment D; is independent from the unobserved potential outcomes
Y(0) and Y(1):

%)%, (0) LDx,

i

Under this assumption, conditioning on X;, the average outcome under control for
those units in the control condition is equal to the average outcome under control for
those units in the treatment condition:

E(Y,(0)ID,=0.X,)=E(Y,(0)I D, =1.X,) = E(Y,(0) 1 X,)
Similarly, conditioning on X;, the average outcome under treatment for those units

in the control condition is equal to the average outcome under treatment for those
units in the treatment condition:

E(Y,(1)ID,=0,X,)=E(Y,(1)I D, =1.X,) =E(Y, (1) X,)

Thus, the expected value of Y; is independent from D;, given X,. Using the Law of
Iterated Expectations, the ATT is given by:

ATT = E[Y,(1)-,(0)1 D, =1] = E[ E[¥,(1)-Y,(0)ID, =1, X, ]ID, =1]
=E[ E[Y,(1)ID, =1, X, ]-E[¥,(0)1D, =1, X, |ID, = 1]

The term E [ Y(0)l D; = 1, X;] is counterfactual, but under the selection on observ-
ables assumption, we have:

ATT = E[ E[Y,(1)1D, =1, X, ]-E[¥,(0)1D, =0, X, |ID, =1]
We can rewrite it as:
ATT =E[6,1D, =1]
where §, is the difference in means by treatment status at each value of X,.
8, =E[Y,(1)ID, =1, X, |-E[¥,(0)ID, =0, X, |

This is the identification strategy employed by the so-called “exact matching.”
Informally, it suggests preprocessing the data so that each treated unit is matched
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with all the available control units that have exactly the same covariates values (do
not confuse the exact matching with the one-to-one exact matching, which is more
limited because it uses only one control unit for each treated unit). If, after exact
matching, a large number of treated units are exactly matched with one or more
control units, then we have an exact balance with little inefficiency. This means that
a (weighted) difference between the average outcomes of matched treated and con-
trol units is sufficient to obtain an unbiased estimate of the ATT. We added
“weighted” in parentheses because, since each treated unit can be matched with
more than one control unit, a weighted difference in means across exactly matched
subclasses is suggested to account for the difference in the number of treated and
control units. Beware that if some treated units cannot be matched because there is
not at least one control unit with exactly the same covariates values, the exact
matching procedure drops these treated units. By dropping some treated units, we
alter the estimand: it is no longer the ATT, but a more local version of it (Crump
et al., 2009; Rubin, 2010). As discussed in Chap. 3, Sect. 3.3.3, this may weaken the
external validity of the estimates. This choice is reasonable as long as the researcher
is transparent about it and its consequences in terms of the new set of treated units
over which the causal effect is defined (Iacus et al., 2012: 5).

If an insufficient number of exact matches are found, and thus, many treated
units have to be discarded, the researcher has to switch to other matching proce-
dures that preprocess the data so that each treated unit is matched with all the avail-
able control units that have approximately the same covariates values.

4.3.3 Propensity Score Tautology

The best practice for approximate matching procedures involves two steps. The first
step drops treated and control units outside the so-called “common support” of both
groups. Informally, the common support assumption requires that for any treated
unit with given covariate values, it is also possible to observe a control unit with the
same (or approximately the same) covariate values. Thus, ensuring common sup-
port requires the researcher to drop observations where the empirical density of
treated and control units does not overlap since including these observations would
require extrapolation from the data, which can generate considerable model
dependence.

To accomplish this first step, King and Zeng (2007) suggest pruning observations
from the control group that are outside of the “convex hull” of the treatment group.
Informally, with one pretreatment covariate X, the convex hull of the treatment
group is the range of the subset of observations of X that are in the treatment group
so that control units with values of X greater than max(XIT = 1) or lower than
min(XIT = 1) are discarded. Similarly, if any treated units fall outside the convex hull
of the control units, these are also discarded (see also lacus & Porro, 2009 for
another conservative way of identifying common support). Remember once more
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that dropping treated units changes the estimand: it is no longer the ATT, but a more
local version of it.

The second step matches treated units with control units so that they are as close
as possible according to some metric. However, as anticipated, establishing on
which dimensions the degree of closeness between treated and control units has to
be evaluated (i.e. selecting the pretreatment covariates to be included into Xj) is not
easy: the researcher might be willing to include a large set of covariates, many of
them multivalued or continuous. This problem is known as “the curse of
dimensionality.”

Rosembaum and Rubin (1983) addressed this problem by developing a matching
procedure based on the propensity score, defined as the conditional probability of
receiving the treatment given the pretreatment covariates selected by the researcher.
They start from the usual selection on observables assumption: once we condition
on X;, the average potential outcome under control for those units in the treatment
condition should be equal to the average potential outcome under control for those
units in the control condition. Thus, once we condition on X;, the average potential
outcome under control should be the same irrespective of the treatment condition:

E(Y,(0)ID,=1X,)=E(Y,(0)I D, =0,X,) = E(Y,(0) 1 X,)

They move on by demonstrating that if potential outcomes are independent of treat-
ment status conditional on the set of covariates X;, then potential outcomes are also
independent of treatment status conditional on a scalar function of the same covari-
ates X;, labelled “propensity score.” They collapsed the set of covariates X; into a
monodimensional variable that measures, for each unit i, the probability of receiv-
ing treatment given the values of its set of covariates X;, P(D; = 11 X;). Usually, it is
estimated through a logit or a probit function, which regresses D, on a constant term
and the set of covariates X; chosen by the researcher, without looking at Y;:

E(Yi(o)lDi :l’P(Xi)):E(Yi(O)lDi :O,P(Xl.))=E(Yi(O)|P(Xi))

Approximate matching methods based on the propensity score tend to skip the first
step and to check for common support only after having estimated the propensity
score for each observation i. Indeed, they drop control units that have a propensity
score lower than the minimum or higher than the maximum of the propensity score
of the treated units (Khandker et al., 2010).

However, the reader may have already realized that the propensity score solution
by Rosembaum and Rubin (1983) is a tautology. The propensity score has been
developed to solve the course of dimensionality problem (i.e. too many dimensions
to be controlled for to match treated and control units). However, since we do not
know the “true” propensity score, it has to be estimated through a probability model
that adds the same dimensions as independent variables. Moreover, the only way to
check the validity of the specification of the estimated propensity score (i.e. to check
whether the estimated propensity score is a consistent estimate of the “true”
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propensity score) is to stratify the sample over small propensity score intervals and
then, for each covariate in each interval, test whether the means of the treated and
control units are not statistically different. If this is not the case, the researcher has
to improve the specification of the probit or logit function he/she used to estimate
the propensity score and start again (Dehejia & Wahba, 1999; Becker & Ichino,
2002). Unfortunately, there is no way out from the propensity score tautology: “[I]t
works when it works [when matching on the propensity score balances the raw
covariates], and when it does not work, it does not work (and when it does not work,
keep working at it)” (Ho et al., 2007: 219).

4.3.4 How to Choose Among Matching Procedures?

Once the researcher has estimated the propensity score for each unit i, they have to
choose a metric to match treated and control units. Several metrics are available:
they vary in the strategy they follow to select the matches and in the weight they
associate with each match. Table 4.1 lists the most widely used approximate match-
ing procedures based on the propensity score and provides references for further
readings (see also Caliendo & Kopeinig, 2008).

Given this long and non-exhaustive list of approximate matching procedures,
how can we choose among them? The methodological literature does not provide a
clear-cut answer. Since the main diagnostics of success in matching are balance (i.e.
the degree to which the treatment and the control group covariate distributions
resemble each other) and the number of observations remaining after preprocessing

Table 4.1 Commonest approximate matching techniques based on the propensity score

Further

Technique Description readings
Nearest For each treated unit, the algorithm finds the control unit with | Smith (1997),
neighbor the nearest propensity score. This can be done with or without | Smith and
matching replacement. In the former case, an untreated unit can be used | Todd (2005)

more than once as a match. In the latter case, if the nearest

control unit has already been matched to another treated unit,

the algorithm does not consider it and searches for a new one.
Caliper and For each treated unit, the caliper matching algorithm finds the | Smith and
radius closest control unit whose propensity score falls within a Todd (2005),
matching radius r chosen by the researcher. The radius version matches | Dehejia and

each treated unit with all the control units within the radius ». | Wahba (2002)
Stratification | The algorithm partitions the sample into a set of intervals Imbens (2004)
matching (strata) so that in each stratum, the propensity score of treated

and control units have the same mean value.
Kernel The algorithm matches every treated unit with a weighted Heckman et al.
matching average of (nearly) all control units with weights that are (1997, 1998)

inversely proportional to the distance between the propensity

scores.
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the raw data, a rule of thumb is to preprocess raw data by running as many approxi-
mate matching procedures as possible. To avoid any confirmation bias, it is crucial
that the researcher performs this comparison without consulting Y. Then, they have
to choose the procedure that maximizes balance while keeping n as large as possible
(Ho et al., 2007). As the reader may have foreseen, this search for the matching
procedure that maximizes balance and the number of observations may be tedious
as the researcher has to manually iterate between the available algorithms (Ho et al.,
2007; Tacus et al., 2009; Heinmueller, 2012; King & Nielsen, 2019). Section 4.4
describes two techniques that address this problem.

To assess balance, Ho et al. (2007: 221) suggest the following options: first,
comparing the mean of each variable X; in the treatment group with the mean of
each variable in the control group (if one or more of these differences differ by more
than a quarter of a standard deviation of the respective X; variable, a better balance
is needed) (Cochran, 1968); second, comparing treatment and control histograms
one variable at a time; third, using a quantile—quantile plot (QQ plot) for each vari-
able to compare the full empirical distributions of each variable for the treatment
and control groups; and lastly, the same QQ plot can be used for the propensity
scores of the treatment and control groups. Even if tautological (it relies on the pro-
pensity score as a summary of the data to check whether the chosen propensity
score matching is adequate), it may be a good low-dimensional summary (Ho et al.,
2007: 221-223; see also Rubin, 2001; Austin & Mamdani, 2006; Imai et al., 2008).

One might object that increasing balance by throwing away unmatched observa-
tions will reduce statistical efficiency (i.e. the mean squared error of the estimated
effect might increase). However, “efficiency should be a secondary concern for
observational students” (Keele, 2015: 325). In a randomized experiment, where
selection bias is known to be zero, adding observations simply increases power. On
the other hand, in an observational study, increasing the sample size may shrink the
confidence intervals to a point that excludes the “true” treatment effect point esti-
mate (Cochran & Chambers, 1965). Moreover, Rosenbaum (2004, 2005) demon-
strated that in observational studies, reducing unit heterogeneity reduces both
sampling variability and sensitivity to bias from unobserved covariates. Thus, as a
rule of thumb, there are reasons for preprocessing raw data through matching pro-
cedures in order to reduce heterogeneity between the treatment and control groups
according to a set of observable covariates (for theoretical and simulation results,
see also Rubin & Thomas, 1992, 1996; Imai & Van Dyk, 2004; Imbens, 2004;
Morgan & Winship, 2014; Stuart, 2010).

4.3.5 The End: The Parametric Qutcome Analysis

Having selected the matching algorithm that maximizes balance while keeping n as
large as possible, the researcher has to move to the usual parametric analysis to
obtain a causal effect estimate. Indeed, matching is just a non-parametric statistic
tool for reweighting or simply discarding units in the raw data so that the treatment
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and control groups become as similar as possible on a set of observable covariates
or, to put it differently, so that the treatment variable becomes as close as possible to
being independent of the background characteristics.

The causal effect can be estimated through a simple (weighted) difference in
means between the observed outcomes of the treatment and control groups only if
they are exactly balanced. Indeed, the difference in means is equivalent to regress-
ing Y; on D; without any control variables, thus assuming that D; and X; are unre-
lated. This assumption is plausible only if exact matching has been achieved for the
treated units, which is very unlikely. By computing a simple difference in means on
a preprocessed sample where there is some remaining imbalance between the treat-
ment and the control groups, we would certainly incur in an omitted variable bias.

Thus, whenever the treatment and control groups are not exactly balanced, the
researcher is better off using the same parametric model he/she would have also
used on the raw data without preprocessing. Preprocessing data with matching
makes causal effect estimates based on the subsequent parametric analyses far less
dependent on modeling choices and specifications (Ho et al., 2007; (lacus
et al., 2019).

4.4 Empirical Illustration

LaLonde (1986) was the first to assess the performance of several non-experimental
estimators by using experimental data as a benchmark. His experimental data came
from the National Supported Work Demonstration (NSWD), a subsidized work
experience program that took place in 1975-1976 in the United States. The program
consisted into providing trainees with work in a sheltered training environment and
then assisting them in finding regular jobs. To take part in the NSWD, potential
participants had to satisfy a set of eligibility criteria intended to identify individuals
with significant barriers to employment. Then, actual treatment (i.e. the subsidized
work experience) was randomized among applicants meeting the eligibility criteria.

Using a simple difference in means between the observed post-intervention earn-
ings of the treatment and control groups, LalLonde (1986) obtained an unbiased
estimate of the effect of the subsidized work experience: the program was estimated
to increase post-intervention earnings by $1,794 with a 95% confidence interval of
[551; 3,038]. Thus, according to this experimental result, the program was success-
ful. Then, he compared this experimental result to those obtained from several non-
experimental estimators applied to the NSWD observations that received training
(treated units only) and a set of control observations constructed ex post from two
standard population survey data sets (i.e. CPS and PSID). His findings show that
alternative non-experimental estimators produce very different estimates, most of
which deviate substantially from the experimental benchmark.

Several subsequent studies have reanalyzed LalLonde’s results, using more recent
statistical procedures (e.g., Dehejia & Wahba, 1999; Becker & Ichino, 2002; Smith
& Todd, 2005; Tacus et al., 2009, 2012, 2019). Notably, Dehejia and Wahba (1999)
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restricted LalLonde’s data set to individuals from whom data on previous earnings
were available in 1974 and compared several matching estimations to a fully satu-
rated in X OLS regression (original samples and replication materials are available
on Dehejia’s page: https://users.nber.org/~rdehejia/nswdata2.html). They concluded
that matching procedures dominated fully saturated in X regression. However,
Smith and Todd (2005) showed that Dehejia and Wahba’s findings came from the
specific sample chosen by the authors, but they did not hold on other samples. Thus,
they argued that estimating the causal effect by simply preprocessing data with
matching and then computing a (weighted) difference in mean between the treat-
ment and control groups seems not to perform better than a fully saturated in X OLS
regression. Thus, as explained in the Sect. 4.3.5, after having preprocessed data with
the matching procedure that maximizes balance while saving enough of n, a method
of estimation should be applied. Smith and Todd (2005), for example, found that a
combination of matching and difference-in-differences performs the best.

This section summarizes and simplifies for the reader the very latest contribution
in this long querelle about LalLonde results and matching procedures. Indeed, we
focus on the theoretical refinements by Heinmueller (2012) and Iacus et al. (2019) and
on the algorithms they, respectively, developed: entropy balancing (EB; Heinmueller
& Xu, 2013) and coarsened exact matching (CEM; Blackwell et al., 2009).

EB and CEM are similar from several points of view. Both of these techniques
are used in observational studies to preprocess the raw data prior to the estimation
of a binary treatment effect under the assumption of selection on observables, and
both of them are aimed at improving the covariate balance between the treatment
and control groups. Moreover, both techniques overcome the propensity score tau-
tology by requiring the researcher to establish the desired degree of covariate bal-
ance before the preprocessing adjustment. Lastly, both of them are computationally
efficient and have been proved to reduce model dependence for the subsequent esti-
mation of the treatment effect via parametric outcome analysis.

However, they also differ in important ways. As explained below, CEM coarsens
each covariate into substantively meaningful categories identified ex ante by the
researcher and then matches units exactly on this coarsened scale. Treated and con-
trol units that cannot be exactly matched are discarded. As the reader already knows,
by discarding treated units, CEM changes the estimand from the ATT to a more
local treatment effect for the remaining treated units (see Iacus et al., 2009 for rea-
sons for why this can be beneficial). On the other hand, EB leaves the estimand
unchanged because it does not discard treated units. Sections 4.4.1 and 4.4.2. assist
readers in getting familiar with these two algorithms.

4.4.1 Entropy Balancing

EB is a data preprocessing method proposed by Heinmueller (2012). Crudely put,
the algorithm works as follows. As usual, the researcher has to identify a set of pre-
treatment covariates according to his/her substantive knowledge, previous studies,
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and data availability. Then, for each covariate, the researcher has to pre-specify a
potential large set of balance constraints to equate the moments of the covariate
distribution between the treatment and the control groups. The moments refer to the
mean (first moment), the variance (second moment), and the skewness (third
moment). For example, the researcher can request that the mean values (first
moments) of a set of covariates in the control group exactly equate to the mean
values of the same set of covariates in the treatment group. Moreover, they can also
include interaction terms such that, for example, the mean of one covariate is bal-
anced across subgroups of another covariate. Lastly, the algorithm searches for a set
of entropy weights to satisfy the balance constraints imposed by the researcher,
while remaining as close as possible to the uniformly distributed base weights to
prevent loss of information.

EB has several attractive features. Its reweighting scheme directly incorporates
the researcher’s knowledge about the moments in the treatment group and adjusts
the weights to balance the covariate distribution exactly in finite samples, without
discarding any treated unit. These are key improvements as they overcome the time-
consuming search over propensity score models without changing the estimand.
Moreover, the weights that result from EB can be easily incorporated into any stan-
dard statistical model the researcher would have used even without the preprocess-
ing step.

To illustrate the functioning of EB, Heinmueller and Xu (2013) rely on the subset
of the original LalLonde data set (1986) already used by Dehejia and Wahba (1999).
The data set provides information on 185 treated units from the NSWD that were
involved in the subsidized work experience and 15,992 non-participants from the
Current Population Survey Social Security Administration File (CPS-1). The for-
mer constitutes the treatment group, and the latter the control group. Remember that
this control group is not the one identified through randomization during the
NSWD. Instead, this control group is built ex post by using the CPS.

The treatment variable, freat, is 1 for participants and 0 for nonparticipants. The
outcome variable is real earnings in 1978 US dollars (re78). The available pretreat-
ment covariates include age (age), years of education (educ), marital status (mar-
ried), lack of a high school diploma (nodegree), race (black, hispanic), indicator
variables for unemployment in 1974 (u74) and 1975 (475), and real earnings in
1974 (re74) and 1975 (re75). The estimand is the increase in earnings in 1978 due
to the subsidized work experience.

By simply regressing re78 on the treatment variable and all the controls, it seems
that being exposed to the subsidized work experience increased earnings in 1978 by
$1,068 (Fig. 4.1). However, the 95% confidence interval is large enough that the
relative estimate is not statistically different from 0. Remember that in this lucky
case, we know from the NSWD experimental result that being exposed to the treat-
ment increased earnings in 1978 by $1,794 with a 95% confidence interval of [551;
3,038]. Thus, the OLS estimate on the raw data is substantially lower than the
benchmark effect established on the experimental data.

Thus, the authors preprocess the raw data using EB. The basic syntax of the com-
mand ebalance requires the researcher to list the treatment variable (freat) and the
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reg re78 treat age educ black hispan married nodegree re74 re75 u74 u75

Source 55 df MS Number of obs = 16,177
F{11l, 16165) = 1343.88

Model 7.2418e+11 11 6.5835e+10 Prob > F = 0.0000
Residual 7.9190e+11 16,165 48988567.3 R-squared 0.4777
Adj R-squared = 0.4773

Total 1.516le+12 16,176 93724175.2 Root MSE = 6999.2
re’ld Coef. Std. Err. t P>|t] [95% Conf. Interval]
treat 1067.546 554.0595 1.93 0.054 -18.471893 2153.564
age -94.54102 6.000283 -15.76 0.000 -106.3022 -82.7798
educ 175.2255 28.69658 6.11 0.000 118.977 231.474
black -811.0888 212 .8488 -3.81 0.000 -1228.296 -393.8815
hispan -230.5349 218.6098 -1.05 0.292 -659.0344 197.9646
married 153.2284 142.7748 1.07 0.283 -126.626 433.0828
nodegree 342.9265 177.8778 1.93 0.054 -5.733561 691.5866
reld .2914332 .0127311 22.89 0.000 .2664789 .3163875
re75 . 4426945 .0128868 34.35 0.000 .417435 .467954

u’l4 355.5564 231.6004 1.54 0.125 -98.40599 809.5189

uls -1612.758 239.803 -6.73 0.000 -2082.798 -1142.717
_cons 5762.18 445.6145 12.93 0.000 4888.726 6635.634

Fig. 4.1 OLS regression on the raw data

pretreatment covariates he/she will focus on (e.g., age, educ, black, and hispan).
The most important option in ebalance is targets(numlist) as it allows the researcher
to impose the balance constraints for the included covariates. In detail, the researcher
has to specify a number (1, 2, or 3) that corresponds to the highest covariate moment
that should be adjusted for each covariate.

For example, this code requests that the mean, variance, and skewness of the
variables age, educ, black, and hispan are adjusted: ebalance treat age educ black
hispan, targets (3).

As shown in Fig. 4.2, the command returns the number of treated and control
units. Note that EB does not discard treated units (185), thus keeping the original
estimand. Then, it reports descriptive statistics on the mean, variance, and skewness
of the selected covariates in the treatment and in the control groups, before and after
the reweighting procedure. As requested, the algorithm perfectly balances the two
groups on first-, second-, and third-order moments by fitting the EB weights. By
default, the EB weights are stored in a variable named _webal and can be readily
used for subsequent analysis.

By writing 2 instead of 3 in parentheses, the algorithm would have balanced only
the mean and variance of the same variables; by writing 1, it would have balanced
only the mean of the same variables. The command also allows to specify specific
constraints to each variable (see Fig. 4.3). For example, according to the command:

ebalance will adjust the first moment for age and educ, the first and the second
moments for black and the first, second, and third moments for hispan.

To reweight the original Lal.onde (1986) data set, Heinmueller and Xu (2013)
adjust the sample by including the means, variances, and skewness of all of the 10
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Treated units: 185 total of weights: 185
Control units: 15992 total of weights: 185

Before: without weighting

Treat Control
mean variance skewness mean variance skewness
age 25.82 51.19 1.115 33.23 122 .3478
educ 10.35 4.043 =.7212 12.03 8.242 =-.4233
black .8432 .1329 -1.888 .07354 .06813 3.268
hispan .05946 .05623 3.726 .07204 .06685 3.311
After: webal as the weighting variable
Treat Control
mean variance skewness mean variance skewness
age 25.82 51.19 1.115 25.8 51.16 1.122
educ 10.35 4.043 -.T7212 10.34 4.04 -.7119
black .8432 .1329 -1.888 .8421 .1329 -1.877
hispan .05946 .05623 3.726 . 05966 .05611 3.718

Fig. 4.2 The output of the ebalance command

. ebalance treat age educ black hispan, targets(l 1 2 3)

Data Setup
Treatment variable: treat
Covariate adjustment: age educ black hispan (lst order). black hispan (2Znd order). hispan (3rd order).

Fig. 4.3 Options of the ebalance command

pretreatment covariates plus squared terms and first-order interactions of the same
10 covariates and cubed terms for age, educ, re74, and re75.

By running the initial OLS regression on the reweighted data, the treatment
effect estimate suggests that being exposed to the subsidized work experience
increased earnings in 1978 by $1,761 with a 95% confidence interval of [333;
3,190]. Thus, the simple OLS estimate on the reweighted data is very close to the
experimental target answer ($1,794 with a 95% confidence interval of [551; 3,038]).
A similar conclusion may be achieved by regressing re78 on treat only (Fig. 4.4).

4.4.2 Coarsened Exact Matching

All the matching procedures based on the propensity score (see Table 4.1) assume
that the data generation process is based on simple random sampling, which means
that drawing repeated hypothetical samples of fixed size n < coat random from a
population of € units with covariates X, each sample of n observations has an equal
probability of selection.
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svy: reg re78 treat age educ black hispan married nodegree re74 re75 u74 u75s
(running regress on estimation sample)

Survey: Linear regression

Number of strata = 1 Number of obs = 16,177
Number of PSUs = 16,177 Population size = 370
Design df 16,176
F( 11, 16166) = 3.08
Prob > F = 0.0004
R-squared 0.0942
Linearized
re78 Coef. 5td. Err. t P>|t]| [95% Conf. Interval]
treat 1761.951 729.079 2.42 0.016 332.8754 3191.027
age -18.3346 49.976587 -0.37 0.714 -116.295 79.62578
educ 446.504 214.4348 2.08 0.037 26.188 866.82
black -629.7442 848.1102 -0.74 0.458 -2292.134 1032.646
hispan 1263.509 1486.528 0.85 0.395 -1650.25 4177.269
married -288.1295 908.5693 -0.32 0.751 -2069.026 1492.767
nodegree -76.56057 1127.987 -0.07 0.946 -2287.559 2134.438
reld .1277705 .1639249 0.78 0.436 -.1935404 .4490815
rels .394469 .169975 2.32 0.020 .0612992 . 7276387
uld 2585.847 1635.288 1.58 0.114 -619.4993 5791.193
u7s -1570.203 1585.939 -0.99 0.322 -4678.818 1538.413
_cons -755.398 3829.273 -0.20 0.844 -B261.196 6750.4

Fig. 4.4 OLS regression on the reweighted data

CEM modifies this assumption by theorizing that the data generation process
guarantees stratified random sampling. Informally, the adjective “stratified” means
that random sampling does not apply directly to the population of € units, but to
strata or partitions, within this population, that are identified by the researcher
according to his/her knowledge of the set of covariates X. For example, if the set of
covariates X includes age, gender, and earnings, a stratum may refer to young males
making more than $25,000. Inside this stratum, sample selection should be random
(Tacus et al., 2019: 48-49). Then, as with all the other matching procedures, CEM is
grounded on the selection on observables and on the common support assumptions
(even if inside each stratum; see Iacus et al., 2019: 50-51).

As the reader may have already realized, the emphasis is on the definition of
strata by the researcher. The authors underline that this step is case specific and criti-
cally reflects “the knowledge the investigator must have” (Iacus et al., 2019: 54).
Indeed, the CEM algorithm helps the researcher in coarsening each variable among
the set of pretreatment covariates judged as relevant into substantively meaningful
categories that reduce variability while at the same time preserving information.
The easiest example is the variable reporting the years of education that can be eas-
ily coarsened into categories such as high school, some college, college gradu-
ates, etc.

Starting from the Lalonde’s data set (1986), lacus et al. (2009, 2011, 2012,
2019) show that CEM, on average, dominates commonly used matching procedures
in a large variety of real and simulated data sets because it reduces imbalance, model
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dependence, estimation error, bias, variance, and mean square error. Moreover, it
usually produces more matched units. Furthermore, while to improve propensity
score matching, the researcher has to marginally change and rerun the model,
recheck imbalance, and rerun the model again several times (King & Nielsen, 2019),
and CEM makes it easier to find a specification that improves balance. Indeed, strata
are explicitly defined ex ante by the researcher according to his/her substantive
knowledge on the covariates: reducing maximum imbalance on one variable never
has any effect on the maximum imbalance specified for any of the other variables
(Tacus et al., 2012: 21). Let us apply this algorithm to the subset of the original
LalLonde data set (1986) already used by Dehejia and Wahba (1999). For an appli-
cation on the original experimental LaLoonde’s data set, see Blackwell et al. (2009).

First, we have to assess the imbalance in the original unmatched data through the
Al statistic (Tacus et al., 2008). This statistic ranges from 0, meaning perfect global
balance between the treatment and the control groups, to 1, meaning complete sepa-
ration between the two (Fig. 4.5).

The imb (meaning “imbalance”) command works as follows. The researcher has
to list the pretreatment covariates they want to focus on (in the example, age, educ,
black, and hispan), followed by the indication of the treatment variable (treat). First,
the Stata output shows the A' statistic. In our example, A! = 0.893, thus signaling that
the original unmatched data are highly unbalanced. Note that the A! value is not
valuable on its own: it is as a point of comparison between matching solutions. The
value 0.893 is a baseline reference for the unmatched data. The researcher has to
compare the A' value obtained on the matched data to the value 0.893 obtained on
the unmatched data and verify whether there has been an increase in balance due to
the matching solution (Blackwell et al., 2009: 531).

Then, the output shows additional unidimensional measures of imbalance. The
first column, labelled L1, reports the statistics A! computed for each variable sepa-
rately. The second column, mean, reports the difference in means between the treat-
ment and control groups. The remaining columns report the difference in the
empirical quantiles of the distributions of the two groups for the 0, 25%, 50%, 75%,
and 100™ percentiles for each variable (Fig. 4.6).

. imb age educ black hispan, treatment (treat)
(using the scott break method for L1 distance)

Multivariate L1 distance: .89338487

Univariate imbalance:

L1 mean min 25% 50% 75% max

age .34379 -7.409 1 -4 -6 -13 =
educ .43776 -1.6816 4 -2 -1 =1 -2
black .76971 .76971 o] 1 1 a | ]
hispan .01258 -.01258 o] ] 0 o] ]

Fig. 4.5 The output of the imb command
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. cem age educ black hispan, treatment(treat)

Matching Summary:
Number of strata: 495
Number of matched strata: 73

0 1

All 15992 185
Matched 4942 183
Unmatched 11050 2

Multivariate L1 distance: .34363655

Univariate imbalance:

L1 mean min 25% 50% 75% max

age .14045 .06542 1 0 0 1 -1
educ .03644 -.03644 0 0 0 0 ]
black 5.4e-15 6.3e-15 0 0 0 0 ]
hispan 3.2e-15 4.6e-16 0 0 0 0 0

Fig. 4.6 The output of the cemn command

Having obtained our baseline reference A! value for the unmatched data, we
apply the CEM algorithm by calling the cem command. Crudely put, CEM (1)
begins with the covariates X and makes a copy X*, (2) coarsens X* according to user-
defined cut-points (or CEM’s automatic binning algorithm), (3) creates one stratum
per unique observation of X* and places each observation in a stratum, and (4)
assigns these strata to the original data, X, and drops any observation whose stratum
does not contain at least one treated and one control unit. Note that (4) may drop
both treated and control units, thus changing the estimand. However, it does it trans-
parently. Obviously, fewer strata will result in more heterogeneous observations
within the same stratum and thus higher imbalance and vice versa (Blackwell et al.,
2009: 527).

According to this basic coding, cem performs an automated coarsening. The out-
put provides a small table reporting the number of observations in total (All),
matched and unmatched by treatment group. Notably, two treated observations have
been discarded because there were no good matches (thus, the estimand is changed).

Then, the output provides information about the imbalance in the matched data.
The imbalance in the preprocessed data set is equal to 0.343, which means that the
common ground between treated and control units is equal to 66%. Since our base-
line reference A! value for the unmatched data is 0.893, this matching solution
increases the balance between the two groups. Note that cem also generates weights
(stored in cem weights) for use in the subsequent analysis (Fig. 4.7).

As anticipated, the added value of cem is that it allows the researcher to set the
coarsening for each variable such that substantively indistinguishable values are
grouped together. For example, the code below asks cem to match all binary
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cem age (19.5 24.5 34.5 44.5) educ black hispan, treatment(treat)
(using the scott break method for imbalance)

Matching Summary:
Number of strata: 188
Number of matched strata: 47

0 1

All 15992 185
Matched 7781 185
Unmatched 8211 0

Multivariate L1 distance: .43109143

Univariate imbalance:
L1 mean min 25% 50% T5% max
age .22288 -.53236 1 0 0 -2 -7
educ .0274 -.0274 0 0 o o ]
black 4.0e-15 -5.7e-15 0 0 0 0 0
hispan 1.1le-15 -3.3e-16 0 0 0 0 0

Fig. 4.7 The output of the cem command with specific coarsening

. reg re78 treat age educ black hispan married nodegree re74 re75 u74 u75 [iweight=cem weights]

Source | 85 df MSs Humber of cbhs 7,965

+ F(1ll, 7953) 707.33

Model 2.9823e+l11 11 2.7112e+10 Prob > F 0.0000
Residual 3.0488e+11 7,953 38334972.2 R-squared 0.4945
T . 3 = 0.4939

Total | 6.031le+ll 7,964 75729411.4 6191.1
rel8 Coef. Std. Err. L P>|t] [95% Conf. Interval]
treat 1499.672 473.9449 3.18 0.002 570.6154 2428.728
age =-12.28058 11.1687 =-1.10 0.272 =-34.17417 9.613014

educ 214.2673 48.6097 4.41 0.000 118.9796 309.5551
black -1110.799 238.654 -4.65 0.000 -1578.624 -642.9746
hispan 375.2778 366.6572 1.02 0.3086 ~343. 4666 1094.022
married =-1135.783 166.2893 -6.83 0.000 =-1461.753 -809.8118
nodegree -41.36208 215.1226 -0.1% 0.848 -463.0588 380.3346
reld .2799715 .0180831 15.48 0.000 .2445239 .3154191
rel5 .5133666 .0183447 27.98 0.000 4774062 .549327

uid 15.95361 239,9555 0.07 0.947 -454.422 486.3293

ulb -379.1638 243.8983 -1.55 0.120 -B57.2685 98.94082

cons 2951.233 734.1814 4.02 0.000 1512.044 4390.421

Fig. 4.8 OLS regression with cem weights

variables and education exactly and age according to standard labor force classes
(i.e. 15-19, 20-24, 25-34, 35 and over).

This matching solution differs from that resulting from the automated approach:
the balance is worse (from 0.343 in the automated preprocessed data set to 0.431 in
the data set preprocessed according to user choices), but all the treated units have
been matched. Since we have not achieved a perfect balance between treatment and
control groups, it a good idea to adjust for the remaining imbalance via a statistical
model. This can be done by taking advantage of the cem weights (Fig. 4.8).
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By running the initial OLS regression on the reweighted data, the treatment
effect estimate suggests that being exposed to the subsidized work experience
increased earnings in 1978 by $1,499 with a 95% confidence interval of [571;
2,428]. Thus, the OLS estimate on the cem reweighted data is quite close to the
experimental target answer ($1,794 with a 95% confidence interval of [551; 3,038]).

4.5 Conclusion

This chapter discussed the necessary assumptions for statistical correlation to jus-
tify a causal interpretation when, as is usually the case in practice, controlled ran-
domization is unfeasible or politically sensitive and there are no convincing natural
experiments providing a substitute for randomization.

First, the chapter recognized that in observational studies, causal inference is
always hazardous due to the strong assumption of selection on observables, which
is not easily testable by looking at the raw data (see Oster, 2019 on evaluating
OLS robustness to the omitted variable bias). The chapter clarified that, ultimately,
the reliability of the estimates obtained by preprocessing the raw data depends on
the validity of the selection on observables assumption, which should be discussed
on a case-by-case basis by the researcher. Simply put, once you have identified a
set of covariates X;, you should ask yourself whether there are additional unob-
servable variables capable of pushing units into treatment. If the answer is “No,”
then the assumption of selection on observables is theoretically met and matching
and weighting procedures may credibly help you in finding out causal
relationships.

Second, the chapter endorsed the practice of preprocessing the raw data through
weighting and matching techniques in order to generate well-balanced samples and
then applying the same familiar methods of estimation the researcher would have
used anyway on the original data set, without preprocessing. In fact, even if these
implementation steps do not overcome the selection on observables assumption (i.e.
even if your answer to the previous question is “Yes”), weighting and matching
techniques will reduce model dependence for the subsequent estimation of the treat-
ment effect via parametric analysis. This means that effect estimates become far less
sensitive to seemingly arbitrary choices in model specification: if the treatment and
control groups are well balanced, slightly different model specifications are less
likely to alter the substantial empirical conclusion of the analysis. Thus, preprocess-
ing the raw data through weighting and matching techniques to generate well-
balanced samples is strongly suggested. In this regard, remember that CEM may
discard treated units, while EB leaves the estimand unchanged. Even if dropping
unmatched treated units can be beneficial (Iacus et al., 2009), also this choice should
be openly discussed on a case-by-case basis by the researcher: for example, drop-
ping a treated respondent in a survey may be easier to justify than dropping an entire
geographical region.
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The hands-on section provided practical guidance for the implementation of the
EB and CEM algorithms, respectively. This exercise was performed on the well-
known Lalonde (1986) data set, a lucky case in which we know the “true” average
treatment effect from an RCT and we have to match or weight the observations and
to adjust the model specification so that the estimation becomes as close as possible
to the experimental result (see also Costalli & Negri, 2021 for the application of
CEM to the evaluation of the effectiveness of peacekeeping missions in the Bosnian
civil war).

This is not what usually happens in practice. Since researchers do not know the
“true” average treatment effect, they face several decisions during the implementa-
tion of the statistical analysis, and there are not always rules of thumb to be applied.
The most desirable feature of the implementation steps suggested here is that they
force researchers to take the assumptions that have to be met out of the shadows and
make them explicit before looking at the outcomes.

Several things may go wrong. For example, researchers may miss a higher
dimensional aspect of imbalance when checking lower dimensional summaries.
This may affect the estimates. However, since this may also happen without prepro-
cessing, following the steps suggested here should at least not make things worse.
Moreover, when the preprocessing implies the loss of some treated unit, researchers
should openly discuss the consequences in terms of external validity.

Lastly, as with the techniques covered in Chaps. 3 and 5, the research design
discussed here are suitable for establishing a causal relationship between a given
variable of interest, the treatment, and an outcome variable, while controlling for
confounders. The implementation steps described here are not designed to investi-
gate the paths linking a factor of interest to the outcome (see Chap. 6), to identify
the full set of conditions under which the positive outcome is observed (see Chap.
7) or the mechanisms (see Chap. 8) behind the uncovered effects. While recognizing
these limitations, these implementation steps help researchers in evaluating whether
they are meeting the necessary conditions for generating valid inferences in their
applications or how far they go. Good luck with your applied research.

Review Questions

1. Discuss the reasons why statistical association is not a sufficient, but still a nec-
essary, condition to make a causal claim.

2. Formalize the causal inference identification problem through the lens of the
potential outcomes framework and discuss it.

3. Do matching procedures overcome the inferential problems related to the selec-
tion on observables assumption?

4. What are the differences between exact and approximate matching procedures?
List the aforementioned four approximate matching procedures based on the
propensity score and describe two of them.

5. Why can the propensity score solution to the curse of dimensionality be seen as
a tautology?

6. Once treated units have been matched to control units according to one among
the available matching algorithms, is it correct to estimate the causal effect
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through a simple difference in means between the observed outcomes of the
treatment and control groups?

7. Compare EB and CEM preprocessing techniques by highlighting how they,
respectively, address the propensity score tautology.

8. Define the following keywords:

e Confirmation bias

* Selection on observables
* Model dependence

e Common support

* Propensity score

e Balance

Replication Material
* Data and replication materials for Section 4.4 are available at https://github.com/
FedraNegri/CorrelationIsNotCausation Yet-.git
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Chapter 5

Getting the Most Out of Surveys:
Multilevel Regression

and Poststratification

Joseph T. Ornstein

Abstract Good causal inference requires good measurement; even the most
thoughtfully designed research can be derailed by noisy data. Because policy schol-
ars are often interested in public opinion as a key dependent or independent vari-
able, paying careful attention to the sources of measurement error from surveys is
an essential step toward detecting causation. This chapter introduces multilevel
regression and poststratification (MRP), a method for adjusting public opinion esti-
mates to account for observed imbalances between the survey sample and popula-
tion of interest. It covers the history of MRP, recent advances, an example analysis
with code, and concludes with a discussion of best practices and limitations of the
approach.

Learning Objectives
By the end of this chapter, you will be able to:

* Explain the motivation for MRP and the circumstances under which it is appro-
priate to implement.

e Describe the two steps in producing MRP estimates: model fitting and
postsratification.

e Generate MRP estimates by adapting the provided sample code.

* Implement more sophisticated variants of MRP, including stacked regression and
postratification (SRP) or multilevel regression and synthetic poststratification
(MrsP) where appropriate.
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5.1 Introduction

The book you are reading is a testament to the “credibility revolution™ in the social
sciences (Angrist & Pischke, 2010), a wide-ranging effort spanning multiple disci-
plines to develop credible, design-based approaches to causal inference. It is diffi-
cult to overstate the influence this revolution has had on empirical social science,
and the increasing emphasis that policymakers place on informing policy with good
research design is a welcome trend.

But as the ongoing replication crisis in experimental psychology (Button et al.,
2013) has made clear, good research design alone is insufficient to yield good sci-
ence. After all, double-blind randomized control trials are the “gold standard” of
credible causal inference, but small sample sizes and noisy measurement have cre-
ated a situation where many published effect estimates fail to replicate upon further
scrutiny (Loken & Gelman, 2017). To confidently detect causation, one needs both
good research design and good measurement.

Often policy researchers are interested in public opinion on some issue, either as
an independent or dependent variable. But the surveys we use to measure public
opinion are frequently unrepresentative in some important way. Perhaps their
respondents come from a convenience sample (Wang et al., 2015), or non-response
bias skews an otherwise random sample. Or perhaps the data is representative of
some larger population (i.e., a country-level random sample) but contains too few
observations to make inferences about a subgroup of interest. Even the largest US
public opinion surveys do not have enough respondents to make reliable inferences
about lower-level political entities like states or municipalities. Conclusions drawn
from low frequency observations — even in a large sample survey — can be wildly
misleading (Ansolabehere et al., 2015).

This presents a challenge for researchers: how to take unrepresentative survey
data and adjust it so that it is useful for our particular research question. In this
chapter, I will demonstrate a method called Multilevel Regression and
Poststratification (MRP). Using this approach, the researcher first constructs a
model of public opinion (multilevel regression) and then reweights the model’s pre-
dictions based on the observed characteristics of the population of interest (post-
stratification). In the sections that follow, I will describe this approach in detail,
accompanied by replication code in the R statistical language.

As we will see, the accuracy of our MRP estimates depends critically on whether
the first-stage model makes good out-of-sample predictions. The best first-stage
models are regularized (Gelman, 2018) to avoid both over- and underfitting to the
survey data. Regularized ensemble models (Ornstein, 2020) with group-level pre-
dictors tend to produce the best estimates, especially when trained on large survey
datasets.
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5.2 How It Works

MRP was first introduced by Gelman and Little (1997), and in the subsequent
decades, it has helped address a diverse set of research questions in political science.
These range from generating election forecasts using unrepresentative survey data
(Wang et al., 2015) to assessing the responsiveness of state (Lax & Phillips, 2012)
and local policymakers (Tausanovitch & Warshaw, 2014) to their constituents’ pol-
icy preferences.

To demonstrate how the method works, the next section will introduce a running
example drawn from the Cooperative Election Study (Schaffner et al., 2021), a
50,000+ respondent study of voters in the United States. The 2020 wave of the study
includes a question asking respondents whether they support a policy that would
“decrease the number of police on the street by 10 percent, and increase funding for
other public services.” Since police reform is a policy issue on which US local gov-
ernments have a significant amount of autonomy, it would be useful to know how
opinions on this issue vary from place to place without having to conduct separate,
costly surveys in each area.

The problem is that even a survey as large as CES has relatively few respondents
in some small areas of interest. If we wanted to know, for example, what voters in
Detroit thought about police reform, a survey of 50,000 people randomly sampled
from across the United States will have, on average, only 100 people from Detroit.
Estimates from such a small sample will not be very precise. And more importantly,
those 100 people are unlikely to be representative of the population of Detroit, since
the survey was designed to be representative of the country at large.

The core insight of the MRP approach is that we can use similar respondents
from similar areas — e.g., Cleveland or Chicago or Pittsburgh — to improve our infer-
ences about public opinion in Detroit. The way we do so is to first fit a statistical
model of public opinion, using both individual-level predictors (e.g., race, age, gen-
der, education) and group-level predictors (e.g., median income, population den-
sity) from our survey dataset. Then, we reweight the predictions of the model to
match the observed demographics and characteristics of Detroit. In this way, we get
the most out of the information contained in our survey and produce a better esti-
mate of what Detroit residents think than our small sample from Detroit alone could
produce.

5.3 Running Example

To help demonstrate this process, we will draw a small random sample from the
CES survey, and, using that sample alone, attempt to estimate state-level public
opinion on police reform in each US state. In this way, we can evaluate the accuracy
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of our MRP estimates and explore how various refinements to the method improve
predictive accuracy. This approach mirrors Buttice and Highton (2013), who use
disaggregated responses from large-scale US survey of voters as their target esti-
mand to evaluate MRP’s performance. The Cooperative Election Study data is
available here, and we’ll be using a tidied version of the dataset created by the R/
cleanup-ces-2020.R script.!

library(tidyverse)
library(ggrepel)

load('data/CES-2020.RData’)

This tidied version of the data only includes the 33 states with at least 500
respondents. First, let’s plot the percent of CES respondents who supported “defund-
ing” the police? by state.

truth <- ces %>%
group_by(abb) %>%

summarize(truth = mean(defund_police))

truth %>%
mutate(abb = fct_reorder(abb, truth)) %>%
ggplot(mapping = aes(x=truth, y=abb)) +
geom_point(alpha = 0.7) +
labs(x = 'Percent Who Support Police Reform Policy’,
y = 'State') +

theme_minimal()

Oregon is the only state where a majority of respondents supported this policy
proposal. And note that Fig. 5.1 likely overstates the percent of the total population
that support such a policy, since self-identified Democrats are overrepresented in
the CES sample. But nevertheless, these population-level parameters will be a use-
ful target to evaluate the performance of our MRP estimates.

'All replication code and data is available on a public repository (https://github.com/joeornstein/
mrp-chapter). Throughout, I will use R functions from the “tidyverse” (Wickham et al., 2019) to
make the code more human readable.

2Obviously that phrase means different things to different people. In this case, we’ll stick with the
CES proposed policy of reducing police staffing by 10% and diverting those expenditures to other
priorities.


https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/E9N6PH
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Fig. 5.1 The percent of CES respondents in each state who support reducing police budgets.
These are our target estimands

5.3.1 Draw a Sample

Suppose that we did not have access to the entire CES dataset, but only to a random
sample of 1,000 respondents. How good of a job can we do at estimating those state-
level means?
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5.3.1. Draw a Sample

sample_data <- ces %>%
slice_sample(n = 1000)

sample_summary <- sample_data %>%
group_by(abb) %>%
summarize(estimate = mean(defund_police),

num = n())

sample_summary

## # A tibble: 33 x 3
#i abb estimate num

## <chr> <dbl> <int>

## 1 AL 0.55 20
## 2 AR 0 4
## 3 AZ 0.438 16
## 4 CA 0.435 85
## 5 CO 0.478 23
## 6 CT 0.375 8
## 7 FL 0.402 87
## 8 GA 0.346 26
## 9 IA 0.308 13
## 10 IL 0.28 50
## # ... with 23 more rows

In a sample with only 1,000 respondents, there are several states with very few
(or no) respondents. Notice, for example, that this sample includes only four respon-
dents from Arkansas, of whom zero support reducing police budgets. Simply disag-
gregating and taking sample means is unlikely to yield good estimates, as you can
see by comparing those sample means against the truth (Fig. 5.2).
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Fig. 5.2 Estimates from disaggregated sample data

# a function to plot the state-level estimates against the truth

compare_to_truth <- function(estimates, truth){
d <- left_join(estimates, truth, by = 'abb')

ggplot(data = d,
mapping = aes(x=estimate,
y=truth,
label=abb)) +
geom_point(alpha = ©.5) +
geom_text_repel() +
theme_minimal() +

geom_abline(intercept = @, slope = 1, linetype = 'dashed') +

labs(x = 'Estimate’,
y = "Truth',
caption = paste@('Correlation = ', round(cor(d$estimate, d$truth), 2),

', Mean Absolute Error = ', round(mean(abs(d$estimate - d$
truth)), 3)))

}

compare_to_truth(sample_summary, truth)
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These are clearly poor estimates of state-level public opinion. The four respon-
dents from Arksansas simply do not give us enough information to adequately mea-
sure public opinion in that state. But one of the key insights behind MRP is that the
respondents from Arkansas are not the only respondents who can give us informa-
tion about Arkansas! There are other respondents in, for example, Missouri, that are
similar to Arkansas residents on their observed characteristics. If we can determine
the characteristics that predict support for police reform using the entire survey
sample, then we can use those predictions — combined with demographic informa-
tion about Arkansans — to generate better estimates. The trick, in essence, is that our
estimate for Arkansas will be borrowing information from similar respondents in
other states.

The method proceeds in three steps.

5.3.1.1 Step 1: Fit a Model

First, we fit a model of our outcome, using observed characteristics of the survey
respondents as predictors. To demonstrate, let’s fit a simple logistic regression
model including only four demographic predictors: gender, education, race, and age.

model <- glm(defund_police ~
gender + educ + race + age,
data = sample_data,

family "binomial')

5.3.1.2 Step 2: Construct the Poststratification Frame

The poststratification stage requires the researcher to know (or estimate) the joint
frequency distribution of predictor variables in each state. This information is stored
in a “poststratification frame,” a matrix where each row is a unique combination of
characteristics, along with the observed frequency of that combination. Often, one
constructs this frequency distribution from Census micro-data (Lax & Phillips,
2009). For our demonstration, I will compute it directly from the CES.



5 Getting the Most Out of Surveys: Multilevel Regression and Poststratification 107

psframe <- ces %>%

count(abb, gender, educ, race, age)

head(psframe)

## # A tibble: 6 x 6
## abb  gender educ race age n

# <chr> <chr> <chr> <chr> <dbl> <int>

## 1 AL Female 2_year Black 26 1
## 2 AL Female 2_year Black 27 2
## 3 AL Female 2_year Black 29 1
##H 4 AL Female 2_year Black 31 1
## 5 AL Female 2_year Black 34 2
## 6 AL Female 2_year Black 35 2

5.3.1.3 Step 3: Predict and Poststratify

With the model and poststratification frame in hand, the final step is to generate
frequency-weighted predictions of public opinion. For each cell in the poststratifica-
tion frame, append the model’s predicted probability of supporting police defunding.

psframe$predicted_probability <- predict(model, psframe, type = ‘response')

Then, the poststratified estimates are the frequency-weighted means of those
predictions.

poststratified_estimates <- psframe %>%
group_by(abb) %>%

summarize(estimate = weighted.mean(predicted_probability, n))

Let’s see how these estimates compare with the known values (Fig. 5.3).

compare_to_truth(poststratified_estimates, truth)

These estimates, though still imperfectly correlated with the truth, are much bet-
ter than the previous estimates from disaggregation. Notice, in particular, that the
estimate for Arkansas went from 0% to roughly 39%, reflecting the significant
improvement that comes from using more information than the four Arkansans in
our sample can provide.
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Fig. 5.3 Underfit MRP estimates from complete pooling model

But we can still do better. In the following sections, I will show how successive
improvements to the first-stage model can yield more reliable poststratified
estimates.

5.3.2 Beware Overfitting

A common instinct among social scientists building models is to take a “kitchen
sink” approach, including as many explanatory variables as possible (Achen, 2005).
This is counterproductive when the objective is out-of-sample predictive accuracy.
To illustrate, let’s estimate a model with a separate intercept term for each state — a
“fixed effects” model. Because our sample contains several states with very few

observations, these state-specific intercepts will be overfit to sampling variability
(Fig. 5.4).
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Fig. 5.4 Overfit MRP estimates from fixed effects model

# fit the model

model2 <- glm(defund_police ~
gender + educ + race + age +
abb,
data = sample_data,

family = 'binomial')
# construct the poststratification frame
psframe <- ces %>%

count(abb, gender, educ, race, age)

# make predictions

psframe$predicted_probability <- predict(model2, psframe, type

# poststratify
poststratified_estimates <- psframe %>%

group_by(abb) %>%

summarize(estimate = weighted.mean(predicted_probability, n))

compare_to_truth(poststratified_estimates, truth)

0.6

'response’)
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These poststratified estimates perform about as well as the disaggregated esti-
mates from Fig. 5.2. Because each state’s intercept is estimated separately, the over-
fit model foregoes the advantages of “partial pooling” (Park et al., 2004), borrowing
information from respondents in other states. Note that the estimate for Arkansas is
once again 0%.

5.3.3 Partial Pooling

A better approach is to estimate a multilevel model (alternatively known as “varying
intercepts” or “random effects” model), including group-level covariates. In the
model below, I estimate varying intercepts by US Census division, including the
state’s 2020 Democratic vote share as a covariate. The result is a marked improve-
ment over Fig. 5.3 (particularly for West Coast states like Oregon, Washington, and
California) (Fig. 5.5).
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Fig. 5.5 MRP estimates from model with partial pooling
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library(1lme4)

# fit the model

model3 <- glmer(defund_police ~ gender + educ + race + age +
(1 + biden_vote_share | division),
data = sample_data,

family = 'binomial')

# construct the poststratification frame
psframe <- ces %>%

count(abb, gender, educ, race, age, division, biden_vote_share)

# make predictions

psframe$predicted_probability <- predict(model3, psframe, type = 'response')

# poststratify
poststratified_estimates <- psframe %>%
group_by(abb) %>%

summarize(estimate = weighted.mean(predicted_probability, n))

compare_to_truth(poststratified_estimates, truth)

5.3.4 Sample Size Is Critical

MRP’s performance depends heavily on the quality and size of the researcher’s
survey sample. Up to now, we’ve been working with a random sample of 1,000
respondents, and though the resulting estimates are better than the raw sample
means, their performance has been somewhat underwhelming. Suppose instead we
had a sample of 5,000 respondents (Fig. 5.6).
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sample_data <- ces %>%

slice_sample(n = 5000)

# fit the model

model3 <- glmer(defund_police ~

gender + educ + race + age +
(1 + biden_vote_share | division),
data = sample_data,

family = 'binomial')

# construct the poststratification frame
psframe <- ces %>%

count(abb, gender, educ, race, age, division, biden_vote_share)

# make predictions

psframe$predicted_probability <- predict(model3, psframe, type

'response’)
# poststratify
poststratified_estimates <- psframe %>%
group_by(abb) %>%

summarize(estimate

weighted.mean(predicted_probability, n))

compare_to_truth(poststratified_estimates, truth)
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Fig. 5.6 Poststratified estimates with a survey sample of 5,000
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Now MRP really shines. With more observations, the first-stage model can better
predict opinions of out-of-sample respondents, which dramatically improves the
poststratified estimates.

5.3.5 Stacked Regression and Poststratification (SRP)

Ultimately, the accuracy of one’s poststratified estimates depends on the out-of-
sample predictive performance of the first-stage model. As we’ve seen above, the
challenge is to thread the needle between overfitting and underfitting. Several recent
papers (Bisbee, 2019; Broniecki et al., 2022; Ornstein, 2020) have shown that
approaches from machine learning can help to automate this process, particularly
with large survey samples.

In the code below, I'll demonstrate how an ensemble of models — using the same
set of predictors but different methods for combining them into predictions — can
yield superior performance to a single multilevel regression model. In particular, I
will fit a “stacked regression” (Breiman, 1996), which makes predictions based on
a weighted average of multiple models, where the weights are assigned by cross-
validated prediction performance (van der Laan et al., 2007). The literature on
ensemble models is extensive, but for good entry points, I recommend Breiman
(1996), Breiman (2001), and Montgomery et al. (2012) (Fig. 5.7).
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Fig. 5.7 Estimates from an ensemble first-stage model
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# construct the poststratification frame
psframe <- ces %>%

count(abb, gender, educ, race, age, division, biden_vote_share)

# fit the model (an ensemble of random forest and logistic regression)

library(SuperLearner)
SL.library <- c("SL.ranger", "SL.glm")

X <- sample_data %>%

select(gender, educ, race, age, division, biden_vote_share)

newX <- psframe %>%

select(gender, educ, race, age, division, biden_vote_share)

sl <- SuperLearner(Y = sample_data$defund_police,
X = X,
newX = newX,
family = binomial(),
SL.library = SL.library, verbose = FALSE)

# make predictions

psframe$predicted_probability <- sl$SL.predict

# poststratify
poststratified_estimates <- psframe %>%
group_by(abb) %>%

summarize(estimate = weighted.mean(predicted_probability, n))

compare_to_truth(poststratified_estimates, truth)

The performance gains in Fig. 5.7 reflect the improvement that comes from mod-
eling “deep interactions” in the predictors of public opinion (Ghitza & Gelman,
2013). If, for example, income better predicts partisanship in some states but not in
others (Gelman et al., 2007), then a model that captures that moderating effect will
produce better poststratified estimates than one that does not. Machine learning
techniques like random forest (Breiman, 2001) are especially useful for automati-
cally detecting and representing such deep interactions, and stacked regression and
poststratification (SRP) tends to outperform MRP in simulations, particularly for
training data with large sample size (Ornstein, 2020).
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5.3.6 Synthetic Poststratification

Researchers rarely have access to the entire joint distribution of individual-level
covariates. This can be limiting, since there may be a variable that one would like to
include in the first-stage model but cannot because it is not in the poststratification
frame. Leemann and Wasserfallen (2017) suggest an extension of MRP, which they
(delightfully) dub Multilevel regression and synthetic Poststratification’ (MrsP).
Lacking the full joint distribution of covariates for poststratification, one can instead
create a synthetic poststratification frame by assuming that additional covariates are
statistically independent of one another. So long as the first-stage model is linear
additive, this approach yields the same predictions as if you knew the true joint
distribution!* And even if the first-stage model is not linear additive, simulations
suggest that the improved performance from additional predictors tends to over-
come the error introduced in the poststratification stage.

Here are some CES covariates that we might want to include in our model of
police reform:

e How important is religion to the respondent?

e Whether the respondent lives in an urban, rural, or suburban area.

e Whether the respondent or a member of the respondent’s family is a military
veteran.

e Whether the respondent owns or rents their home.

¢ Is the respondent the parent or guardian of a child under the age of 18?

These variables are likely to be useful predictors of opinion about police reform,
and the first-stage model could be improved by including them. But there is no
dataset (that I know of) that would allow us to compute a state-level joint probability
distribution over every one of them. Instead, we would typically only know the
marginal distributions of each covariate (e.g., the percent of a state’s residents that
are military households or the percent that live in urban areas). So a synthetic post-
stratification approach may prove helpful.

To create a synthetic poststratification frame, we create a set of marginal proba-
bility distributions and multiply them together.*

3See Ornstein (2020) Appendix A for mathematical proof.

“The SRP package contains a convenience function for this operation (see the vignette for more
information).


https://joeornstein.github.io/software/SRP/
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# fit the model
model4 <- glmer(defund_police ~ gender + educ + race + age +
pew_religimp + homeowner + urban +
parent + military_household +
(1 + biden_vote_share | division),
data = sample_data,

family = 'binomial')

# construct the poststratification frame
psframe <- ces %>%
count(abb, gender, educ, race, age,
division, biden_vote_share) %>%
# convert frequencies to probabilities
group_by(abb) %>%
mutate(prob = n/sum(n))

# find the marginal distribution for each new variable
marginal_pew_religimp <- ces %>%

count(abb, pew_religimp) %>%

group_by(abb) %>%

mutate(marginal pew religimp = n/sum(n))

marginal_homeowner <- ces %>%
count(abb, homeowner) %>%
group_by(abb) %>%

mutate(marginal_homeowner = n/sum(n))

marginal_urban <- ces %>%
count(abb, urban) %>%
group_by(abb) %>%

mutate(marginal_urban = n/sum(n))

marginal_parent <- ces %>%
count(abb, parent) %>%
group_by(abb) %>%

mutate(marginal_parent = n/sum(n))

marginal_military_household <- ces %>%
count(abb, military_household) %>%
group_by(abb) %>%

mutate(marginal_military household = n/sum(n))

J. T. Ornstein
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# merge the marginal distributions together

synthetic_psframe <- psframe %>%
left_join(marginal_pew_religimp, by =
left_join(marginal_homeowner, by
left_join(marginal_urban, by
left_join(marginal_parent, by
left_join(marginal_military_household, by =

# and multiply
mutate(prob =

"abb') %>%
= 'abb') %>%

‘abb') %>%

‘abb') %>%
‘abb') %>%

prob * marginal_pew_religimp *

marginal_homeowner * marginal_urban *

marginal_parent * marginal_military_household)

Then, poststratify as normal using the synthetic poststratification frame (Fig. 5.8).
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Fig. 5.8 Estimates from synthetic poststratification, including additional covariates
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# make predictions
synthetic_psframe$predicted_probability <- predict(model4, synthetic_psframe,

type = 'response')

# poststratify

poststratified_estimates <- synthetic_psframe %>%
group_by(abb) %>%
# (note that we're weighting by prob instead of n here)

summarize(estimate = weighted.mean(predicted_probability, prob))

compare_to_truth(poststratified_estimates, truth)

5.3.7 Best Performing

As a final demonstration, suppose we had access to the entire joint distribution over
those covariates, and our first-stage model was a Super Learner ensemble. This
combination yields the best-performing estimates yet (Fig. 5.9).
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Correlation = 0.83, Mean Absolute Error = 0.019

Fig. 5.9 The best performing estimates, using a large survey sample, ensemble first-stage model,
and full set of predictors
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# construct the poststratification frame
psframe <- ces %>%
count(abb, gender, race, age, educ,
division, biden_vote_share,
pew_religimp, homeowner, urban,

parent, military_household)

# fit Super Learner

SL.library <- c("SL.ranger", "SL.glm")

X <- sample_data %>%
select(gender, race, age, educ,
division, biden_vote_share,
pew_religimp, homeowner, urban,

parent, military_household)

newX <- psframe %>%
select(gender, race, age, educ,
division, biden_vote_share,
pew_religimp, homeowner, urban,

parent, military_household)

sl <- SuperLearner(Y = sample_data$defund_police,
X = X,
newX = newX,
family = binomial(),
SL.library = SL.library,
verbose = FALSE)

# make predictions

psframe$predicted_probability <- sl$SL.predict

# poststratify
poststratified_estimates <- psframe %>%
group_by(abb) %>%

summarize(estimate = weighted.mean(predicted_probability, n))

compare_to_truth(poststratified_estimates, truth)
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The results shown in Fig. 5.9 reflect all the gains from a larger sample size,

ensemble modeling, and a full set of individual-level and group-level predictors.
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5.4 Conclusion

For policy researchers interested in public opinion, MRP and its various refinements
offer a useful approach to get the most out of survey data. The results I've presented
in this chapter suggest a few lessons to keep in mind when applying MRP to one’s
own research.

First, be wary of first-stage models that are underfit or overfit to the survey data.
As we saw in Fig. 5.3, MRP estimates with too few predictors tend to over-shrink
toward the grand mean.’ Using such estimates to inform subsequent causal infer-
ence would understate the differences between regions. Conversely, models that are
overfit to survey data (e.g., Fig. 5.4) will tend to exaggerate regional differences.

Second, new techniques like synthetic poststratification and stacked regression
can help researchers manage the trade-off between underfitting and overfitting.
Synthetic poststratification allows for the inclusion of more relevant predictors, and
regularized ensemble models help ensure that the predictions are not overfit to noisy
survey samples. The best estimates often come from combining these two
approaches.

Finally, recall that the most significant performance gains in our demonstration
came not from more sophisticated modeling techniques, but from more data. As we
saw in Fig. 5.6, working with a larger survey yielded greater improvements than any
tinkering around with the first-stage modeling choices. MRP is not a panacea, and
one should be skeptical of estimates produced from small-sample surveys, regard-
less of how they are operationalized.

In the code above, I emphasize “do-it-yourself” approaches to MRP - fitting a
model, building a poststratification frame, and producing estimates separately. But
there are a now number of R packages available with useful functions to help ease
the process. In particular, I would encourage curious readers to explore the autoMrP
package (Broniecki et al., 2022), which implements the ensemble modeling
approach described above and performs quite well in simulations when compared to
existing packages.

Further Suggested Readings

e McElreath, Richard. 2020. Statistical Rethinking: A Bayesian Course with
Examples in R and Stan. 2nd ed. Boca Raton: Taylor and Francis, CRC Press.
(particularly chapter 13).

¢ Gelman, Andrew, Jennifer Hill, and Aki Vehtari. 2021. Regression and Other
Stories. Cambridge, United Kingdom: Cambridge University Press. (particularly
chapter 17).

>In the limit, a first-stage model with zero predictors would yield identical poststratified estimates
for each state, equal to the survey sample mean.
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Review Questions

1. What other individual-level or group-level variables might be useful to include
in the first-stage model of opinion on police reform, if they were available?

2. Why is regularization crucial for constructing good first-stage MRP models?

3. What are the benefits and potential downsides of using a synthetic poststratifica-
tion frame?
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Chapter 6

Pathway Analysis, Causal Mediation,
and the Identification of Causal
Mechanisms

Leonce Roth

Abstract This chapter presents the systematic analysis of causal mechanisms from
the perspective of pathway analysis as an essential complement to conventional
approaches to causation. It builds on the evidence that credible causal identification
defies design-based strategies such as randomization or linear mediation analysis
unless their research designs are supported by reliable mechanistic knowledge. The
chapter reasons that the reliable causal identification of a mechanism requires the
concept of ‘natural indirect effect” and a double-nested counterfactual strategy. It
discusses the empirical quantification of causal mechanisms and its underlying
assumptions, offers empirical examples that clarify them, and reviews the condi-
tions and limits of the strategy.

Learning Objectives
After studying this chapter, you will be able to:

e Understand the meaning of a mechanism from the pathway perspective.

e Learn how a counterfactual perspective on causality relates to mechanistic
thinking.

e Learn how to identify and quantify causal mechanisms using non-parametric
procedures.

e Understand why randomization alone does not suffice to identify causal
mechanisms.

e Learn how to identify mechanisms when treatment and mediator interact.

e Understand the crucial assumptions under which indirect natural effect estimates
equal identified causal mechanisms.

L. Réth (B<)
University of Cologne, Cologne, Germany
e-mail: Leonce.Roeth @uni-koeln.de

© The Author(s) 2023 123
A. Damonte, F. Negri (eds.), Causality in Policy Studies, Texts in Quantitative
Political Analysis, https://doi.org/10.1007/978-3-031-12982-7_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12982-7_6&domain=pdf
mailto:Leonce.Roeth@uni-koeln.de
https://doi.org/10.1007/978-3-031-12982-7_6

124 L. Roth

6.1 Introduction

An increasingly popular postulate of causal analysis maintains that good research
includes some account of #ow one variable generates another to underpin a causal
claim. Causal mechanisms are at the center of research in small-n analyses, often
are a crucial part of the theoretical argument in large-n studies, and prove indispens-
able for scholars of systematic pathway analysis. In some accounts, a credible
causal mechanism makes the difference between explanatory and non-explanatory
propositions (Waldner, 2007, 146; Kiser & Hechter, 1991, 5; Mayntz, 2004, 14;
Hedstrém, 2008).

Asking not just for a cause of an effect but also for the intermediate process in
between is a deeper or second form of asking why (Pearl & Mackenzie, 2018,
299-300). The response to this deeper why always complements other types of evi-
dence but remains crucial for qualifying the external and internal validity of causal
relations. Indeed, mechanisms can raise our confidence in the established validity of
a causal association — or undermine it (internal validity). Moreover, their knowledge
can change the inference on evidence even from well-executed trials and improve
the next experimental setup. This is because mechanisms convey information on the
scope conditions of a causal association, which expose the limits of causal effects
and their underlying processes (external validity). Besides, knowledge of mecha-
nisms can reveal multiple pathways between cause and outcome, thus guiding us to
more effective interventions.

A textbook illustration of these points comes from one of the earliest documented
controlled experiments. In 1747, James Lind observed that eating citrus fruits pre-
vents scurvy; understanding and validating the mechanism between citrus intake
and scurvy prevention took another 183 years. In the meantime, the link from citrus
to scurvy was discredited because the mechanism and its scope conditions remained
unknown.!

The central intuition about the citrus treatment was that it involved vitamin C — a
particular type of acid, later called ‘ascorbic’ in recognition of its scurvy preventive
properties. We now know that vitamin C oxidizes when exposed to heat and light or
put in contact with copper. In other words, the citrus treatment only works under
specific scope conditions. Back then, however, the juice was heated for conserva-
tion, copper pipes were in widespread use, and exposure to light was regular. Thus,
many attempts to produce lime juice for sea travels proved ineffective against scurvy.

Furthermore, mechanisms take time to unfold. Today we know that the intake of
ascorbic acid activates the synthesis of the enzyme collagen IV. Collagen is a struc-
tural protein necessary for healthy blood vessels, muscle, skin, bone, cartilage, and
other connective tissues. Ascorbic acid is required for various biosynthetic path-
ways; when these pathways decay, humans develop a series of symptoms

'The startling history of the cure for scurvy is well told in Lewis (1972). Pearl and Mackenzie
(2018) recall it to illustrate mediation. This chapter’s version enriches the history with some recent
knowledge about the causal mechanism, and gives center stage to its scope conditions.
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collectively assembled in the diagnosis of scurvy. Moreover, humans cannot synthe-
size collagen without ascorbic acid and have a low capacity to store it. As collagen
IV synthesis stops 4—12 weeks after the last intake of ascorbic acid, symptoms of
scurvy start to be visible after 4 weeks. The citrus intake also appeared ineffective
for sea travels as the diffusion of steam navigation made many sea trips too short for
the symptoms to show. However, Arctic expeditions remained long enough, and
many seafarers suffered from scurvy in expeditions until the early twentieth century.?

For long, the wrong inference that citrus intake is ineffective for scurvy preven-
tion survived due to the lack of knowledge of the mechanism of activation of col-
lagen IV synthesis. Filling this gap proved crucial for restoring the causal association,
as the mechanism disclosed many necessary scope conditions required for it to
hold — namely, time, temperature, and exposure to light or copper. These conditions
imply that the link between the effect of the treatment and the outcome can only be
established in a study period of at least 4 weeks and if the ascorbic acid is kept
intact. Moreover, they suggest that the link blurs whenever equivalent pathways are
activated — for instance, if seafarers can eat raw meat or any fresh food containing
sufficient ascorbic acid. Thus, perfect randomization of citrus intake may not reveal
its preventive effect when its design does not take the relevant scope conditions of
the mechanism into account.

In short, the knowledge of mechanisms improves three vital criteria of scientific
inference — reliability and internal and external validity. But how to study mecha-
nisms systematically?

In the following, I present the answer provided by the particular version of path-
way analysis that merges graph theory with a counterfactual model of causality into
a powerful framework for identifying mechanisms. This development is roughly
15 years old and still in full swing. It has taken computer science and biology by
storm: biostatisticians now usually run millions of pathway models a minute to
analyze gene expressions and understand the mechanisms linking a drug treatment
and its effect. In comparison, social scientists still seem hesitant to embrace the
many benefits that such a pathway perspective can bring. This chapter’s first and
foremost intention is to reduce hesitation.

To this end, Sect. 6.2 locates the mechanistic why-question in the philosophy of
science and discusses the assumptions under which a generic definition of a path-
way or mediator* can be called ‘a mechanism’. Then, Sect. 6.3 discusses how to
distinguish between mechanistic associations and causal mechanisms. To this end,
it dwells upon a remarkable strength of this method for pathway analysis — a

2Notably, the two expeditions of Robert Falcon Scott to Antarctica in 1903 and 1911 suffered
greatly from scurvy.

3Excellent discussions of causal identification of mechanisms using graph theory are in Morgan
and Winship (2015, Chap. 10); Pearl and Mackenzie (2018, Chap. 9); VanderWeele (2015, Part
One). This chapter owes almost everything to these contributions. However, it takes a more specific
angle on the causal identification of mechanisms in the social sciences.

“Note that, in some disciplines, the identification of mechanism is synonymous with causal media-
tion analysis. Here, instead, mediation is considered a special instance of pathway analysis.



126 L. Réth

graphical rendering of causal assumptions that helps to lay out the structural condi-
tions under which pathways are causally identified or mistaken. Thus, it clarifies
how the graph perspective improves on one of the most applied and cited methods
in the history of the social sciences — the so-called Baron-Kenny approach to media-
tion analysis — and, in so doing, enhances our conditioning strategies.

Section 6.4 discusses the innovative core of pathways analysis — namely, the
‘decomposition’ and the quantification of the total, direct, and indirect effects on
observational data. Indeed, Judea Pearl and others spearheaded a causal revolution
when they defined the conditions of causally identified pathways and developed
non-parametric formulae to decompose total effects into direct and indirect ones
(Pearl, 2022). This quantification strategy of pathway effects took time to be
accepted and faced some deep-rooted skepticism from the more conventional quar-
ters of causal analysis (e.g., Rubin, 2004; Rubin, 2005). Nevertheless, social science
scholars are slowly getting familiar with indirect effects and their underlying coun-
terfactual theory of causation (see Imbens, 2020).

Section 6.5 replicates one influential model from development economics and
sketches another from educational research. The first example demonstrates how
strong supposedly mechanistic inference based on innovative cluster randomization
in Kenya can be misleading. The second example shows how pathways analysis can
draw important mechanistic lessons from a randomized controlled trial run in the
United States to seemingly no effect. These examples prove mechanistic knowledge
essential to validate and refine even causal evidence from compelling research
designs.

The last section of this chapter intends to keep the promises of the pathway
approach in check and dispel the illusion that causal identification is a simple tech-
nical exercise. As randomized controlled trials or instrumental variable applications
show, the devil lies in the detail of the exclusion restrictions; in this respect, pathway
causal identification is even more demanding than total effects via randomization or
quasi-randomization. Pathway analysis reminds us that our models seldom ensure
the perfect causal identification of a mechanism. Indeed, the complexity of the real
world typically defies our attempts to draw exhaustive causal maps with analytic
tools that require exclusion restrictions. Nonetheless, these restrictions ensure the
transparent rigor that qualifies evidence as causal and distinct from mere association.

6.2 Can Pathways Be Mechanisms?

Sometimes, the concepts of mechanism, pathway, and mediation can be confusing.
All three terms adhere to the general idea of increasing causal depth by diminishing
the contiguity of time and space between cause and outcome. However, what exactly
is considered a cause—effect framework and a mechanistic framework is subject to
the relative status of a research field and is constantly in flux (see also Chap. 2,
Sect. 2.3.1).
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What appears to be a sufficiently deep causal mechanism in one particular
research tradition and time can be perceived as a superficial association in another.
Ideally, research fields increase causal depth over time and remain cautious about
the trade-off between desirable specificity and useful parsimony (Craver & Kaplan,
2020). The balance of specificity and parsimony changes while research progresses,
and what was considered a mechanism once might be addressed as separate cause—
effect relations. Recall from the introduction that it took 183 years to detect the
crucial acid for the mechanism between citrus intake and scurvy prevention. During
the attempts to isolate ascorbic acid, the intake of vitamin C could have been appro-
priately described as the causal mechanism. In light of new knowledge, researchers
today focus on way more specific biosynthesis pathways as distinct causal relation-
ships. In short, researchers have approached the old mechanism to more causal
depth. Philosophers of science call this kind of deepening process “bottoming-out”
(see Fig. 6.1) or, in simpler terms, delivering on the demand for the explanation that
can stop the infinite regress in causal analysis.

Aiming at fundamental explanations has had a strong appeal for a long time now
in the social sciences (see Elster, 1989; Goldthorpe, 2001; Hedstrom et al., 1998;
Hedstrom & Ylikoski, 2010; Knight & Winship, 2013). Nonetheless, causal mecha-
nisms are also seen as the least understood kind of causal claim (Gerring, 2010;
Hedstrom & Ylikoski, 2010; Waldner, 2012).

Some scholars use the term “mechanism” to refer to a series of events between
the original cause and the outcome (Abell, 2004; Mahoney, 2012; Morgan &
Winship, 2015; Pearl, 2009, Pearl & Mackenzie, 2018). The concept of “pathway”,
too, indicates a chain of mediators connecting a cause to an outcome. Thus, some
have embraced the term “mechanism” for the analysis of pathways across cases (see
Gerring, 2010; Imai et al. 2011; Weller & Barnes, 2014; Woodward, 2003, 350-58;
Runhardt, 2015; Morgan & Winship, 2015, 325-352). Other scholars, however, try
to exclusively use the term “causal mechanism” for process tracing within single
cases (for example, Beach, 2017). These scholars adhere to the “process” or “physi-
cal” theories of causation that provide a substantive account of what causal pro-
cesses are in light of what science tells us about the world (Dowe, 2000, 1-11 and
Chap. 10).

Far from a terminological subtlety, these usages point to a fundamental divide
over the concept of mechanism. The first group considers causality a matter of epis-
temology that can be addressed with probabilistic or counterfactual models. From
this standpoint, establishing causation is an exercise in logic that many techniques
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Fig. 6.1 Approaching to causal depth
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can perform — provided that they afford comparisons (“type” causality; see Rohlfing
& Zuber, 2021, 1634-35). In contrast, the holders of the process theory of causation
maintain that causality is necessarily local — which means that it is manifest only in
individual cases (“token” causality). Following the process view, within every
unique case, causality exists in fine-grained sequences of entities’ activities that
have to satisfy the criterion of seamless productive continuity (Dowe, 2000). From
the perspective of bottoming-out, the process viewpoint on mechanistic causation
raises the highest possible demand on causal depth.

A pathway as a sequence of mediators (or interactions) cannot satisfy the onto-
logical criteria established by the process view of mechanistic causation. First,
seamless productive continuity can hardly be demonstrated by pathway analysis.
Second, the very strength of pathway analysis lies in inferences from comparisons
across cases or samples. In short, from the process view on causation, pathways do
not deserve the term “mechanism”. However, this reservation is a relative rarity in
the social sciences. Most scholars are satisfied with an evidential view on mecha-
nisms as a cause-to-effect pathway that at least includes one mediator. Even without
satisfying the high demands from the process view, pathway analysts also approach
causal depth as they want to know what connects a supposed cause and its outcome
at the fundamental level, hence in a general form. As we will see in the next part, the
biggest strength of pathway analysis in that ambition for deeper explanations is
epistemological. Pathway analysis has developed clear and transparent criteria to
distinguish causal mechanisms from mechanistic associations.

6.3 Identifying Causal Mechanisms with Graphs

Causal identification is a general problem independent of the commitment to a
mechanistic theory (Pearl, 2009). Pearl’s metaphor of a “ladder of causation” ren-
ders the solutions to the identification problem as a historical endeavor to more
reliable causal knowledge (Pearl & Mackenzie, 2018, 23-52). In this line of thought,
scientists moved from the regularity theory over probabilistic theory to the interven-
tionist theory before reaching the top level of the counterfactual theory. As Pearl’s
argument goes, counterfactuals win the highest pitch as they synthesize and improve
on previous solutions to causal identification problems.

From a regularity viewpoint, only the perfect sequence of the candidate cause
and outcome constitutes evidence for causation. In our scurvy example, the regular-
ity criterion requires that every citrus intake prevents scurvy without exceptions.
The scope conditions of the mechanism demonstrated this bare inference mostly
wrong. Under some circumstances, citrus can fail, or the causal effect might be
observed without citrus. In Pearl’s account, the limits of perfect regularity motivate
the shift toward the probabilistic account of causality.

The probabilistic account admits that a causal relation unfolds or fails due to
scope conditions and alternative mechanisms but maintains that many of them
remain unknown. Hence, our best knowledge about citrus intake can focus on
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whether it affects the probability of getting scurvy net of contextual vagaries — that
is, on average. However, evidence that a factor affects the probability of an outcome
does not constitute evidence for causation either. A limit of the probabilistic
approach is that it cannot establish the direction of causation — a problem known as
“asymmetry” or “endogeneity”’. In light of observed probability, for instance, it
might also be that scurvy causes lemon intake.

The problem of asymmetry is solved when the candidate cause precedes the
outcome. The best way of ensuring this order is to get some control over the candi-
date causal factor. So, if we prescribe citrus intake to healthy and compliant seafar-
ers once on board, we can gather more convincing evidence of its contribution to the
probability of getting scurvy. This approach is at the heart of the ‘interventionist’
school of causality.

With the asymmetry problem being solved, the thorniest issue of causal identifi-
cation takes center stage. Even in an interventionist framework, confounders can
bias the identification. Thus, we might mistake the sequence of two events as causal
despite it being due to a third unobserved factor instead. Logically, the counterfac-
tual theory of causation can discriminate between a confounded relationship and a
causal one. The observed event is the real cause when it precedes the outcome, and
its manipulation resonates with a change in the outcome that would not have
occurred without the intervention. Thus, the counterfactual subsumes all preceding
approaches to causal identification. Moreover, it embraces the ‘would haves’ and,
on this basis, can offer a single theoretical solution to both asymmetry and con-
founding problems.

The counterfactual approach is deeply embedded in pathway analysis with
graphs. Its notation responds to the problem of asymmetry by using directed arrows
to clarify the direction of causality in contrast to the equal sign typical of the regres-
sion framework. Directed arrows connect “nodes” or variables in structures of
dependency that recall family trees. Thus, the nodes in a path of directed arrows can
be indicated as “grand-parent”, “parent”, “child”, and “grand-child.” These struc-
tures embody strong and weak causal assumptions. An arrow between two nodes
indicates a weak causal assumption. It renders the direction of dependency — the fact
that values of the child variable change in response to the values taken by the parent
variable — but neither its sign® nor the size of the causal effect. The strongest causal
assumption is the absence of an arrow between two nodes, as it signals that the cor-
responding variables take their values independently of one another. Furthermore,
pathway analysts have introduced the so-called “do-operator’” to mimic an interven-
tion on an arrow and model the effect of its removal on observational data. This
operator marks a relevant difference from conventional counterfactual studies based
on non-intervention.

SHowever, some biologists introduced a distinction in the notation of the positive and the negative
effects.
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6.3.1 Closing the Backdoor

Graph theory offers a transparent strategy to tackle the two crucial problems of
causal identification, namely, asymmetry and confounding. Figure 6.2 illustrates the
task in its simplest form.

On the left-hand side of Fig. 6.2, we see the identification for the total effect
framework, as in a typical correlation or regression analysis. To declare the associa-
tion between X and Y causal, we first need to demonstrate that X precedes Y and not
the other way around. This assumption is embodied in the direction of the arrows.
The second task is to check that the association between X and Y is not confounded
by third factors such as C. Path X « C — Y is a so-called “open back-door path”
and can be seen as a pipe where non-causal variance is flowing that confounds the
true relationship between X and Y. Back-door paths can be closed in two ways.
First, by conditioning on C. If we can hold C constant, the back-door paths between
X and Y are closed, and the association between X and Y is not confounded any-
more. To hold confounders constant is a common identification strategy — for exam-
ple, in multivariate regressions where we regress Y on X and condition on C (Pearl
& Mackenzie, 2018, 157). A second widespread approach is the randomization of
X. If we assign the treatment condition of X randomly, all associations running into
X are broken, and, therefore, all back-door paths are closed (compare middle part of
Fig. 6.2). Experimental designs build on the randomization of the treatment. In
quasi-experimental designs — such as regression discontinuity or instrumental vari-
ables — randomness in the assignment to treatment arises indirectly from natural
factors or events independently of the causal channel of interest (see Chap. 3). If we
can rule out both reversed causality and confounding, the associations between X
and Y imply causation by necessity. The power of the back-door criterion is that it
reveals under which conditions associations are causal even based on observa-
tional data.

In a mechanistic framework, the two conditions for a causal interpretation of
associations are the same: X needs to precede Y, and all back-door paths between X
and Y need to be closed, as on the right-hand side of Fig. 6.2. However, these condi-
tions allow the causal interpretation of the total effect between X and Y, not the
causal interpretation of the other quantities of interest to a mechanistic framework —
namely, the effect of X on M (X — M, M being the mediator), and the effect of M
onY (M — Y; Y being the outcome). More conditions must be fulfilled to allow for
a causal interpretation of the associations b and ¢ on the right-hand side of Fig. 6.2.

€ (supposed confounding) € (suppased confoanding) L] M o L= M F
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Fig. 6.2 Causal identification with and without a mechanism
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Fig. 6.3 Collider bias in M C
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X has to precede M, and M has to precede Y. Furthermore, all three associations (a,
b, and c¢) have to be un-confounded to reveal the ‘true’ causal effect from X — M,
from M — Y, and the remaining effect of X — Y. In that framework, the total effect
equals the sum of the effect from X over M to Y (the indirect effect) and the remain-
ing effect of X on 'Y (the direct effect).

If we randomize the treatment X of a mediation model, the randomized treatment
blocks all arrows running into X. In the example on the right-hand side of Fig. 6.2,
the randomization means ruling out the confounding of C1 and C2 so that the total
effect of X on Y still is the true causal effect. However, even with a randomized
treatment, we are still unable to quantify the indirect effect. The reason is that C3 is
left unconditioned and confounds the relationship between M and Y (path c).
Randomization of the treatment does close all back-door paths running into X but
does not suffice to identify mechanisms. Unfortunately, the problem of potential
confounding between M and Y runs even deeper.

Figure 6.3 represents a famous causal model of the effect of smoking on child
mortality. It represents precisely the constellation described on the right-hand side
of Fig. 6.2 and represents a fundamental problem of mechanistic identification, the
collider bias. The collider bias has troubled statisticians for centuries and led to
uncountable false inferences, the birth-weight paradox just being a prominent
example.®

Let us consider the example in Fig. 6.3. In the mid-1960s, Jacob Yerushalmy
pointed out that smoking during pregnancy seemed to benefit the health of children
if the baby happened to be born underweight — the so-called “birth-weight paradox”
(see Yerushalmy, 1971).7 Until 2006, this paradox remained unexplained.

In an extensive data set, Yerushalmy found unexpected relationships. Babies of
smokers were lighter than babies of non-smokers. However, within the group of
low-birth-weight babies, the babies of smoking mothers had a better survival rate
than those of non-smokers. It was as if the mother’s smoking had a protective effect
within the group of babies being born underweight. The inference was that “there is
no causal path from smoking to mortality” (Yerushalmy, 1971). How come?

Yerushalmy’s findings are the consequence of a problematic conditioning strat-
egy. He was unaware of the importance of genetic disposition and operated under

°Tt likely was Barbara Burks who first modeled the problem using causal graphs in 1926.
7 An excellent discussion of the birthweight paradox can be found in Wilcox (2006).
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Fig. 6.4 Collider bias in mediation analysis

the assumption of the left model in Fig. 6.4. However, even within that model, it
does not make sense to condition on birthweight. Birthweight is not a confounder,
but a mediator. Conditioning on the mediator means correcting for the variance that
runs through it. In the example, it means controlling for the indirect effect of birth-
weight. The remaining effect of X on'Y is typically seen as the direct effect.

Conditioning on a mediator is justified to separate the indirect effect
(X - M = Y) from the direct one (X — Y). As such, it lies at the heart of the con-
ventional mediation analysis. Indeed, conventional mediation analysis compares
effect estimates of the cause based on two separate regressions. The crucial differ-
ence runs between the estimate of the coefficient of X on Y in a model without a
mediator and in one conditioned on the mediator. As an illustration, if 100% of the
variance of the effect from cause X runs through mediator M, conditioning on M
leads to a null coefficient of the cause. Baron and Kenny (1986) define three neces-
sary, but not sufficient, conditions for detecting mediation along these lines®:

— X has to be significantly related to M.

— M has to be significantly related to Y.

— The total association between X and Y has to decrease when M is kept in
the model.

This reasoning allows inferring four types of mediations based on how the effect
between X on'Y changes when we condition on M (see Fig. 6.5).

Conventional mediation analysis speaks of ‘full mediation” when the total vari-
ance is associated with the path from X via M to Y (indirect effect), and the direct
effect of X on'Y leaves nothing unexplained. ‘“Partial mediation” is inferred from a
reduced direct effect of X on'Y after conditioning on the mediator. “No evidence for
mediation” is inferred when the conditioning on the mediator does not affect the
direct effect from X on Y. Finally, “inconsistent mediation” is inferred when the
adjustment on the mediator reverses the direction of the effect of X on'Y.

The birth weight paradox is an instructive example of inconsistent mediation.
The reason is that the most prominent factor for low birth weight is a specific genetic
disposition that sorts an even higher impact on mortality than smoking. Genetic
dispositions confound the path M — Y, as illustrated on the right-hand side of

$Note that this paper is one of the most cited papers in scientific history.
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Fig. 6.5 Types of mediation. (Note: *** refers to the level of significance)

Fig. 6.4. It is easy to see that Yerushalmy overlooked an important confounder; what
is not so easy to see is that Yerushalmy conditioned on a collider.

A collider is given when the same outcome depends on two different causes or,
in graphical terms, when at least two arrows point to the same node. In Fig. 6.4,
birthweight is a mediator (X - M — Y) and a collider (X — M « C). Adjusting for
the collider means opening a closed back-door path from X over C to Y. In other
words, conditioning on birthweight creates a spurious positive association between
the smoking of mothers and children’s survival because genetic dispositions con-
found the relationship between birth weight and child mortality.

In short, Yerushalmy’s surprising findings follow from this troublesome condi-
tioning strategy. Conditioning on birth weight leads to an entirely new comparison
within the stratum of children with low weight at birth. Within this new stratum,
smoking mothers seem to affect babies’ survival positively. However, this associa-
tion is spurious. Genetic disposition has an even stronger effect on birth weight than
smoking, and unless controlled for, it biases the association between birth weight
and child mortality.

The graph-theoretical solution of the birth weight paradox offers at least two
important lessons. First, while conditioning on confounders closes back-door paths
and yields unbiased associations, conditioning on mediators and/or collider vari-
ables leads to biased associations. Second, and more important for the causal iden-
tification of mechanisms, standard mediation analysis proves unreliable.
Conditioning on a collider has caused uncountable “mediation fallacies” (Pear]l &
Mackenzie, 2018, 315). Despite the increased awareness, the pervasiveness of the
problem can still be underestimated. Indeed, mediation fallacies are not limited to
the cases of inconsistent mediation. Instead, they may affect all types of conven-
tional mediation with significant consequences. If a collider cannot be ruled out,
regression-based mediation analysis cannot be trusted to produce reliable effect
estimates as we cannot quantify the bias introduced by conditioning on the mediator.

Figure 6.6 illustrates a more complex causal system where we might be inter-
ested in the relative importance of pathway X — M1 — M2 — Y versus pathway
X — M3 — Y. This identification task clearly falls beyond the possibilities of the
regression framework and demands the more powerful approach to pathway analy-
sis that graphs afford instead.

The overall model entails 11 variables and consists of 16 paths. The back-door
criteria guide us to an effective conditioning strategy. There is no confounding
between X and Y and the total effect represents the true causal effect, as we declare
the causal system exhaustive. However, estimating the indirect effect of the two
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Fig. 6.6 More complex pathways

pathways of interest requires conditioning. The effect of path b is biased unless we
condition on C1. The effect of path d is biased unless we condition on C2, C3, or C2
and C3 - conditioning on any of these confounders blocks the back-door path
M2 « C2 — C3 = Y effectively. Al could be considered an alternative explanation
for'Y on which it is unnecessary to condition because it does not affect the quantities
of interest. C4 and C5 should not be conditioned on: C4 is a collider and would open
the non-active backdoor path M3 — C4 — C5 — Y; similarly, C5 should not be
conditioned because of the extended collider rule that even ‘descendants’ of collid-
ers, too, activate back-door paths.

The overall goal of the conditioning strategy guided by the back-door criterion is
to block all the paths that generate non-causal associations between the cause and
the outcome without inadvertently blocking any of the paths that generate the causal
effect itself (Morgan & Winship, 2015, 109). Conditioning on C in Fig. 6.2 is a
viable option whereas conditioning on M in Fig. 6.3 opens an otherwise closed
back-door path. Eventually, with Morgan and Winship (2015, 109), the back-door
criterion can be defined as follows:

If one or more back-door paths connect the causal variable to the outcome variable, the
causal effect is identified by conditioning on a set of variables Z if

Condition 1: All back-door paths between the causal variable and the outcome variable
are blocked after conditioning on Z, which will always be the case if each back-door path

(a) Contains a chain of mediation, where the middle variable is in Z or

(b) Contains a fork of mutual dependence, where the middle variable is in Z or

(c) Contains an inverted fork of mutual causation, where the middle variable and all of its descen-
dants are not in Z

and
Condition 2: No variables in Z are descendants of the causal variable that lie on any of
the directed paths that begin at the causal variable and reach the outcome variable.

However, closing the back-doors is only one of two possible identification strategies.

6.3.2 Closing the Front Door

The front-door criterion provides another interesting identification strategy derived
from causal graph theory in cases where essential confounders remain unobserved.
For example, let us turn to the prize-winning paper on skills and the labor market by
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Glynn and Kashin (2018). Glynn and Kashin applied the front-door criterion to a
well-known dataset on the effect of the Job Training Partnership Act (JTPA). The
Act institutes a job training program to equip participants with different skills. The
dataset contains data on the people who applied for the program, whether they
showed up, and their earnings over 18 months. The study includes a randomized
control trial (RCT) and an observational component. Figure 6.7 provides the causal
graphs of the general problem (left), the example (middle), and the front-door
approach (right).

The variable signed up records whether a person did enroll to the job training, the
variable showed up whether the enrollee did use the services. The program can only
affect the earnings if users showed up, so the absence of a direct arrow between
signed up to earnings can be easily justified. In other words, the entire effect is
mediated. Let us say cause, outcome, and mediator are all affected by the general
motivation of an applicant, but unfortunately, we have not measured motivation. In
a causal graph, an unmeasured variable is typically depicted by a hollow node.

The logic of the front door is to block all paths running into M — in other words,
to shield the mediator. In the example of Fig. 6.7, we might randomly call applicants
off and compare the randomly canceled applicants with those given real training.
With all front-door paths being closed, the estimates of paths b and ¢ can be calcu-
lated and are unbiased by definition. In that example, absent a direct effect, the
indirect effect equals the total effect, and the estimate using the front-door equals
the estimate based on the randomization of X. Glynn and Kashin compared the
front-door predictions with those from a randomized controlled experiment, and
found the results very similar (Glynn & Kashin, 2018).

The front-door approach could remove almost all of the bias introduced by the
omission of the confounder of motivation. In contrast, a simultaneous estimation
using the back-door without the possibility of conditioning on motivation showed
substantial differences to both the experimental results and the front-door approach
(Glynn & Kashin, 2017, 2018).

With Morgan and Winship (2015, 333-334), the front-door criterion can be
defined as follows:

If one or more unblocked back-door paths connect a causal variable to an outcome variable,

the causal effect is identified by conditioning on a set of observed variables, M, that make
up an identifying mechanism if

G C (motivation) C (motivation)
Py M @ M (showed up) @ M (showed up)
a
L] L4 L ] L L] L]
X Y X (signed up) Y (Earnings) X (signed up) Y (Earnings;

Fig. 6.7 How to shield a mediator
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Condition 1 (exhaustiveness): The variable in the set M intercepts all directed paths
from the causal variable to the outcome variable.

and

Condition 2 (isolation): No unblocked back-door paths connect the causal variable to
the variables in the set M, and all back-door paths from the variables in the set M to the
outcome variable can be blocked by conditioning on the causal variable.

At this point, we have learned two different ways to identify causal mechanisms. By
definition, closing all back-door paths or closing all front-door paths leads to causal
estimates even with observational data. The logic of back-door paths explains why
the identification of indirect effect is neither ensured by the randomization of the
cause nor by conditioning on the mediator as applied by conventional regression-
based mediation analysis. The next section discusses how indirect and direct effects
can nonetheless be identified.

6.4 Identifying Indirect Effects

For a long time, mediation analysts defined:

Total Effect = Direct Effect + Indirect Effect

This formula understands the indirect effect as a residual category. The Baron-
Kenny approach (1986) is entirely built upon this logical pillar. As a straightforward
consequence, the conventional approach advised conditioning on the mediator to
arrive at the direct effect and, in force of the composition assumption, calculating
the indirect effect of mediation as the total minus the direct effect.

The first problem, as already seen, is that the composition stands if M and Y are
not confounded or, in other words, if a collider bias can be ruled out. The second
problem is that the estimate of the residual is only credible in strictly linear systems.
Once we relax the linearity assumption, the composition rule fails (Pearl &
Mackenzie, 2018, 322-336).°

6.4.1 Indirect Effect in Non-linear Systems

The language of indirect, direct, and total effects evolved in the 1970s, but only
recently was the indirect effect defined in causal terms. This shift entailed embrac-
ing counterfactual thinking.

°The problem of conventional mediation analysis is very fundamental. Mediation analysis based
on the difference methods (Baron & Kenny, 1986; Judd and Kenny, 1981) and linear regression
models suffer from problems in the presence of interactions, non-linearities, binary outcomes,
unobserved confounders, and other modeling complications (see Shpitser, 2013).
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Let us start with the direct effect using the do-calculus. In the simple graph of
treatment (X), mediator (M), and outcome (Y), we get the direct effect of X on' Y
when we intervene on X without allowing M to change. We do(M = 0) and ran-
domly assign units to do(X = 1) or do(X = 0). We call this the ‘controlled direct
effect’ or CDE.

CDE(0) raises when we force the mediator to take on the value of zero and can
be computed as

CDE(0) = Pr(Y =11do(X =1),do(M =0))-Pr(Y =11,do(X = 0)1,do(M = 0))

Had we forced the mediator to be 1, we would have denoted the resulting controlled
direct effect as CDE(1). In practice, however, this alternative strategy could prove
unwise as it forces M on instances of X that are potentially implausible to observe.
Moreover, inferring the direct effect from the difference between CDE(1) and
CDE(0) is to infer from an over-controlled experiment.

The so-called ‘natural direct effect” or NDE offers an alternative perspective. We
randomize X, but let M take the value it would naturally do. The ‘would’ indicates
that a counterfactual is required and can be calculated as follows:

NDE = Pr(Yy_yo =11 do(X =1))=Pr(Y,_y, =11 do(X =0)).

The NDE subtracts the probability of having a positive outcome without the treat-
ment (X = 0) under M equal to zero from the probability of having a positive out-
come with the treatment (X = 1) again under null M. In short, the NDE holds the
mediator constant while the treatment is forced toward specific values. Indirect
effects, unlike direct effects, have no controlled version because there is no way to
disable the direct path by holding some variable constant.

Indirect effects have a natural version, too, which again requires thinking in
counterfactual terms. The natural indirect effect (NIE) is when we would abstain
from the treatment, but allow the mediator to be present. Understanding the causal
properties of the indirect effect requires a double-nested counterfactual. In formal
terms, we can define the natural indirect effect as follows:

NIE:Pr(Y

o = 11do(X =0))=Pr(Y,_y, =11do(X =0))
The first term indicates the probability of a positive outcome under absent treatment
and present mediator. From this quantity, we subtract the probability of the positive
outcome under the ‘natural’ situation where both the treatment and mediator
are given.

The counterfactual M1 must be computed for each observation on a case-by-case
basis. This requirement places the natural indirect effect out of the experimenters’
reach as they may not know the value of the mediator M1 for any particular



138 L. Réth

treatment X at the level of the individual unit. However, assuming there is no con-
founding between X and M as well as M and Y (i.e., ruling out the confounding and
the collider bias), the NIE can still be computed on observational data. The natural
indirect effect entails denying the treatment to anyone, and letting the mediator take
the value it would have in the presence of the counterfactual treatment for each
individual. The difference yields Pearl and Mackenzie (2018, 333) mediation for-
mula as follows:

NIE =3[ Pr(X=1)-Pr(X=0)]-Pr(Y=11X=0,M=m)

The expression stands for the effect of X on M in the subset of the units where the
mediator takes the value m (in square brackets) times the probability that Y = 1
when X = 0 and the mediator takes the value m. So formulated, the NIE exposes the
source of the product-of-coefficients idea and casts the product of two non-linear
effects. Moreover, this formula allows calculating what is explained by mediation
and the percentage owed to mediation.

6.4.2 Indirect Effect When the Cause
and the Mediator Interact

The identification of indirect effects becomes more complex when the mediator and
the supposed cause (or “exposure”) interact. A unified perspective on the decompo-
sition of the total effect in a case where the independent variable of interest interacts
with the mediator has been provided by VanderWeele (2014).

So far, effect decomposition has meant to split a total effect into an indirect and
direct one. In the presence of exposure-mediator interaction, two components need
to be added: the one due to interaction only; the other due to mediation and interac-
tion (see VanderWeele, 2014, 751). The counterfactual assumptions to identify the
effect quantities are similar to those required to analyze causal mediation without
interaction. As in the case of causal mediation, indirect effects including interac-
tions require double-nested counterfactuals, whereas the direct effect requires
weaker assumptions. The attribution of the interaction quantities to either the indi-
rect or direct effect, instead, remains an empirical question. Figure 6.8 illustrates
two possible response strategies based on VanderWeele (2014, 757).

The fourfold decomposition depicted in Fig. 6.8 encompasses both decomposi-
tions for mediation and interaction.

For interaction, the reference interaction (INTref) and the mediated interaction
(INTmed) combine to the portion attributable to interaction (PAI). The portion
attributable to interaction (PAI) combines with the controlled direct effect (CDE)
and the pure indirect effect (PIE) to give the total effect (TE).
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Fig. 6.8 Fourfold decomposition

For mediation, the controlled direct effect and the reference interaction (INTref)
combine to give the pure direct effect (PDE); the pure indirect effect (PIE) com-
bines with the mediated interaction (INTmed) to give the total indirect effect (TIE),
and the pure direct effect (PDE) combines with total indirect effect (TIE) to give the
total effect (TE).

6.4.3 Wrapping Up

The graph theory reveals that the identification of causal mechanisms requires coun-
terfactuals. The natural indirect effect is when we abstain from the treatment, but the
mediator is present. Contrasted with the state where both the treatment and the
mediator are present, we can quantify how much of the effect of X on'Y is captured
by the mediator M, and how much of Y is owed to the mediator M alone. Such a
natural indirect effect gauges a causal mechanism once the back-door criterion is
satisfied, e.g., all back-door paths are closed.

The consequences of this definition are far-reaching. The identification of causal
mechanisms appears as out of reach to the conventional mediation analysis than to
randomization. What appears as bad news can also be a good insight, as the natural
indirect effect yields a mediation formula stripped of any parametric assumptions.
Under some assumptions, this formula allows quantifying the causal mechanism
based on observational data. Section 6.5 demonstrates this claim with the example
of a renowned identification debate.
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6.5 Applications

6.5.1 A Mechanistic View on the Worm Wars

In this application case, I add a causal mediation view to the “worm wars” — a
famous debate over the interpretation of influential cluster randomization in Kenya
that, besides other studies, brought one of its authors, Michael Kremer, the Nobel
Memorial Prize in Economic Sciences in 2019.

The study originates from the evidence that nearly two billion people world-
wide — mostly children — are infected by intestinal worms. These species inhabit the
human digestive tract; they spread by expelling their eggs via the body waste of
infected people. Without good sanitation, these microscopic eggs can find their way,
unnoticed, onto the skin or food of another person. Once someone ingests an egg,
the reinfection cycle continues. Poor sanitation facilities and hygiene practices
allow infections to spread locally.

In 2004, a landmark study showed that an inexpensive medication to treat para-
sitic worms could improve health and school attendance for millions of children in
many developing countries (Miguel & Kremer, 2004). Eleven years later, a headline
in The Guardian reported that the deworming treatment had been debunked. In
2021, a carefully exercised replication study restated the original findings (see
Ozier, 2021). Why so?

Miguel and Kremer convincingly argued that, due to the infectiousness of the
worms, individual treatments are unlikely to be effective because children will
quickly re-infect themselves with other children. Consequently, they run an encom-
passing field experiment in Kenya using cluster randomization at the school level.
The experiment compared more than 25,000 treated children across three waves to
a control group for each wave with similar attributes except for the suppressed treat-
ment. They found a remarkable effect of the treatment on school attendance not
only in the treatment area (up to 3 km) but also in the surrounding areas (3—6 km
from the treatment).

Replication analyses have mainly confirmed the direct effect in the treatment
areas. However, the spillover effects became subject to debate and turned insignifi-
cant in some specifications (for example, Aiken et al., 2014). The debate about the
replication involved many influential scholars, was covered by several blogs, and
eventually came to be known as the “worm wars”. A systematic review of the debate
seemed to restore the trust in the key findings of the original study. Ozier (2021)
concluded that, if anything, years of debates and replication have reinforced his
belief in the main effect. In short, it appeared as if the treatment of Miguel and
Kremer had indeed sorted a substantial positive impact on children’s school
attendance.

However, there is a second line of skepticism, less concerned with the signifi-
cance levels of the total effects but with the plausibility of the indirect effect. The
indirect effect, as we have learned, considers the probability of a positive outcome
(school attendance) given that we do not have a treatment (no de-worming drug
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intake), but we set the mediator (being, in fact, de-wormed) to the values as if we
would have had treatment (de-worming drug intake). We contrast this with the prob-
ability of a positive outcome (school attendance) under natural conditions where the
treatment is given (de-worming drug intake) and the mediator too (being de-
wormed). Based on Pearl’s mediation formulae, we can compute the natural indirect
effect using observational data. The results can be given a causal interpretation if we
can exclude confounding between the mediator (being de-wormed) and the out-
come (school attendance).

This mechanistic perspective on the study is of great interest for at least two
reasons. First, experts in deworming cast considerable doubt on the findings.
Epidemiologists refused to include the paper in a meta-study for methodological
reasons (no blinded treatment was performed) and referred instead to existing epi-
demiological studies that, if at all, showed very modest effects of deworming on
school attendance. In other words, the authors of a Cochrane review were uncon-
vinced that de-worming could have had such a substantial effect as reported in
Miguel and Kremer (Taylor-Robinson et al., 2015). Second, the authors of the origi-
nal experiment framed their study and their results as if they had strong evidence for
the entire mechanism. In the words of the authors’ abstract, “[d]eworming substan-
tially improved health and school participation among untreated children in both
treatment schools and neighboring schools, and these externalities are large enough
to justify fully subsidizing treatment.” (Miguel & Kremer, 2004, 159). In short, the
authors’ inference is that their evidence point to a clear recommendation for subsi-
dizing de-worming treatments because de-wormed students have a higher likeli-
hood of attending school. Is it the de-worming via the drug intake that causes
students to attend school more often?

Based on the original data, the mediation formulae can be used to put the mecha-
nistic claim under scrutiny. Table 6.1 includes all probabilities required to compute
the natural indirect, natural direct, and the total effect based on the replication data
of Miguel and Kremer (2014), Miguel et al. (2014).'° By relating indirect and direct
effect quantities to the total effect, we can draw valuable conclusions. The natural
indirect effect supports the suspicion of the epidemiologists. Only 1.8% of the total
effect would be achieved by worm-free students alone. In contrast, 94.2% of the
total effect is related to the natural direct effect of the treatment other than

For the replication, I use a very simple model based on the drug treatment in the first period of
the field experiment. The experiment had three waves, but the comparison groups changed during
the waves and because the effect on school attendance is predominantly a result of the first wave,
I focus on the first wave only. For the mediator, I use the reversed indicator of any moderate or
heavy worm infection based on the WHO standard in 1999. I see the mechanism present when a
treated student is indeed free of worms. For the outcome, I use a dummy of students being present
in school at times of the surprise visit. The current documentation of the data is exemplary (see
Miguel and Kremer, 2014; Miguel et al. 2014; Hicks and Nekesa, 2014).
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Table 6.1 Probabilities of the treatment, the mechanism, the outcome and the natural direct
(NDI), indirect (NIE), and total effect (NTE)

Treatment condition, mediator condition, and outcome probabilities

Present in school Dewormed (in

Treatment | Dewormed | (in %) Treatment | %)

Yes Yes 0.90 No 0.55

Yes No 0.86 Yes 0.59

No Yes 0.86

No No 0.85
Inference

NIE 0.05 NIE/TE 1.8 | 1.8% of the school attendance effect would be
achieved by worm-free students alone

NDE 2.7 NDE/TE 94.2 1 94.2% of the attendance effect is related to the
treatment other than deworming students

TE 2.9 I-NDE/TE | 5.8 |5.8% of attendance effect is owed to the capacity
of the treatment to deworm students

Note: Compare equations for NIE, NDE, and TE above.

deworming students. Finally, 5.8% of the effect on attendance is owed to the capac-
ity of the treatment to deworm students.!!

How do we make sense of these numbers?

Humphreys (2015) documented and commented on the worm wars in close
detail, driven by concerns for the mechanistic element of the study. He points to
several important aspects that can be learned from the documentation of the experi-
ment. Based on background information and the skeptical comments of epidemiolo-
gists, we might add several pathways between treatment and outcome (see Fig. 6.9).
The causal graph reveals that the estimate above of the natural indirect effect is not
identified. There is nothing identified in this system of pathways because too many
nodes are unobserved. Let us briefly describe the pathways in Fig. 6.9.

One element of the treatment is the drug intake that seems to effectively de-worm
students. The effect of de-worming alone is relatively weak, as the path analysis in
Table 6.1 confirms. The drug intake has as least two more effects on attendance that
cannot be isolated given the existing data. De-wormed students create spillovers,
and spillovers might feedback to the treated. This feedback is problematic because
it undermines the assumption of the independence of the treatment group and the
control group — the problem that compelled resorting to cluster randomization in the
first place.

Beyond spillovers, the drug intake can create placebo effects. Students feel better
because of the drug, irrespective of being de-wormed, which might increase school

' An alternative way of modeling these numbers would be to use readymade packages in software
such as R or Stata. In Stata, you would use the model builder and simple graph the mediation
model. After the estimation of all path-coefficients, the effects can be decomposed into total,
direct, and indirect effects using the teffects command (see Bollen, 1989; Sobel, 1987). Note that
this command still assumes linearity and leads to biased estimates in this case.
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Fig. 6.9 Mechanisms in the worm wars

attendance. Since the control group was not treated with a placebo, we cannot esti-
mate the placebo effect. More worrisome is how the research group treated the treat-
ment group beyond the drug intake. The documentation files list health lectures,
wall charts in the schools, training of teachers in the treatment schools, encourage-
ments of the treated students for handwashing, wearing shoes, and avoiding fresh-
water (see Hicks & Nekesa, 2014, 7).!> This extensive treatment had obvious health
effects — including a contribution to de-worming — which suggests that the treated
students likely became well aware of being subject to an encompassing treatment
package. Thus, at least three more paths follow from that treatment beyond
drug intake.

First, the educational elements on health issues might have affected the well-
being of students besides de-worming, which raises their probability to be present
in school. Second, being so obviously treated might activate the Hawthorne effect,
the rising willingness of participants to make the experiment a success in light of the
efforts experimenters provided for the treated. For example, teachers might just
encourage students in the treatment group to show up because they know that school
attendance is an important measure (although it has to be noted that the measure-
ment of school attendance was achieved by surprise visits). Third, health education

2The educational treatments at the school level were part of a separate intervention of the same
NGO and could in principle be controlled based on the data (see Hicks & Nekesa, 2014, 5). In fact
Miguel and Kremer condition on those interventions. They write “None of these programs involved
health treatments for pupils, and given the cross-cutting design, are unlikely to complicate the
identification of average treatment effects across PSDP program and comparison schools.”
Nonetheless, in many specifications Miguel and Kremer (2004) control for assignment to assis-
tance through these other programs’. Only a page later, they write without considering any poten-
tial bias “[t]he educational component of the intervention focused on teaching children about
avoiding the disease. Health educators explained the transmission vectors for different types of
helminths [one of the relevant worm types] and also promoted hand-washing, wearing shoes, and
avoiding contact with fresh water” (2014, 7).
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affects the likelihood of being de-wormed besides de-worming drug intake and
school attendance. Accordingly, the effect of being de-wormed on school atten-
dance, including the spillover effects, is confounded. Knowing about the direction
of the influence of health education (increasing de-worming and school attendance),
the already weak indirect effect of de-worming via drug-intake on school atten-
dance is most likely biased upwards. This perspective reveals that the authors make
strong mechanistic inference without ever quantifying the importance of their
hypothesized mechanism and without noticing that the indirect effect cannot be
precisely identified, given the observable data at hand.

Such a mechanistic perspective also reveals the standing of the main criticism of
the epidemiologists. The Cochrane reviewers classified the study as very weak in
terms of evidence, predominantly because of the lack of placebo treatment of the
control group. Indeed, except for the spillover path, all alternative paths between
treatment and outcome could have been closed by placebo treatment. The consider-
ation also applies to the educational health elements.

Thus, the mechanistic view qualifies the inference of this landmark study sub-
stantially. First, there is a confirmation of a significant indirect effect running from
the treatment over being de-wormed to higher school attendance. However, this
indirect effect explains a very marginal part of the increased school attendance. Way
more important are the indirect effects triggered by the entire treatment package
beyond the ability to de-worm students. The rise in school attendance is predomi-
nantly a composite of different pathways from the Hawthorne pathway over the
health education pathway to a potential placebo pathway, combined around 54
times more powerful for school attendance than the de-worming effect. The overall
inference to recommend the distribution of cheap drugs might be replaced by the
recommendation to offer supposedly more expensive health education.

To be very clear about it, the study of Miguel and Kremer is comparatively well-
executed and deserves to be praised for the logic of cluster randomization alone.
Nonetheless, the mechanistic view on this experiment demonstrates that randomiza-
tion does not allow for mechanistic inference. While the total effect of the treatment
package might still be perfectly identified, the mechanistic view helps identify
which elements of the treatment have created more or less powerful pathways to the
outcome. It is extremely interesting to know how much Hawthorne, placebo, or
health education contributed to the substantial rise in school attendance, as such
effect decomposition can help to improve similar experiments in the future. Like in
the lemon-scurvy example, experimenters need to disable these alternative path-
ways (exclusion restriction) for getting to the correct inference.

A mechanistic view may help to understand supposedly strong effects in well-
executed experiments. Moreover, it can reveal causal mechanisms where experi-
ments seem to yield nothing.
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6.5.2 A Mechanistic View on a Chicago School Reform

In 1998, US secretary of education, William Bennet, called Chicago’s public school
the worst of the nation. However, several reforms in the late 1990s moved them
from the worst to ‘innovators of the nation’.!? One of the core reforms involved a
program called ‘Algebra for All’, compulsory prep courses for ninth graders in high
school. At first sight, the program seemed a success as math scores rose signifi-
cantly. However, the qualification of incoming ninth-grade students was already
improving due to changes in the K-8 curriculums (an important confounder). Once
controlled for this confounder, the reform turned out to be insignificantly related to
the math performance of ninth graders. Here, the story would have typically found
its end.

Luckily, Professor Guanghei Hong remained curious because she knew that
when Algebra for All was introduced, more than the curriculum changed. The
lower-achieving students found themselves in classrooms with higher-achieving
students and could not keep up. Detrimental effects for students and teachers caused
by mixed classes compared to remedial classes are well-known. In short, Mrs. Hong
was suspicious of the unanticipated side effects of the treatment package. Testing
the classroom environment as a mediator between reform and outcome clearly
showed that this pathway had negative consequences. Once taken into c