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Preface

How can we think of causation in policy research? Almost any research tradition 
provides a different answer. For instance, emphasis can be placed either on the pro-
cess leading to a policy outcome or on its underlying conditions. A process can be 
either observable or unobservable, and the underlying relevant conditions can be 
understood  as single factors or complex configurations. Either samples, popula-
tions, or single cases can be invoked as the proper empirical ground for grasping 
them. Evidence can be arranged to either claim relevance or irrelevance. These dif-
ferences reflect as many distinct assumptions about the shape of causation and build 
as many research strategies.

Causality in Policy Studies equips researchers to meet two related challenges in 
the field. First, algorithms for data analysis embed selected assumptions about 
causation that often remain unspoken. Knowing these assumptions is crucial to 
understanding how algorithms can be appropriately employed and eventually com-
bined to compensate for their blind spots and weaknesses. Second, policy research 
is carried out within various disciplines (such as political science, sociology, eco-
nomics, management, and administration), each often married to particular tradi-
tions. The book addresses the technical drive of such differentiation. In doing so, it 
provides the opportunity for researchers of any stripe to familiarize themselves with 
the strategies on which other streams build their claims.

In short, the book shows how to learn from different causal techniques, apply 
them consciously, and possibly make them speak to each other to get a better sense 
of findings. For this purpose, it structures the journey into causal knowledge in three 
stages. First, it introduces the foundational issues of causation (Chaps. 1 and 2). 
Then, it exposes the inner working of selected techniques for causal analysis (Chaps. 
3, 4, 5, 6, 7, 8 and 9). Last, it considers some incompatibilities and complementari-
ties among techniques to improve causal knowledge (Chaps. 10 and 11).

The red thread connecting all chapters is a reasonable realist stance. All share the 
tenets that causation is factual and entails generative and transfer processes unfold-
ing at different levels of reality. Moreover, the chapters agree that causation can be 
known. Hypothetical statements about its manifestations, direction, and conditions 
can be given a testable shape. They also agree that causal statements should be 
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believed when logically and empirically compelling. The book’s commitment to 
methodological pluralism follows from these tenets. The complexity of causal phe-
nomena is such that no single technique can grasp its entirety. Still, each technique 
can illuminate particular facets in response to a precise research question. Indeed, 
asking whether a factor can yield one outcome differs from asking how it happens 
or under which conditions it obtains, and each response calls for adequate analytic 
tools. When pieced together, these responses can offer a better account of the phe-
nomena of interest.

Methodological pluralism can deliver on the promise of better knowledge if the 
strengths and weaknesses of each technique are understood and tackled. To this end, 
each substantive chapter clarifies the research question a technique can answer, the 
research design and data treatment the technique requires for credible results, and 
the domain of validity of its findings. Wherever possible, a replicable example illus-
trates the deployment of the analysis as the sequence of operations and actual deci-
sions. Of course, this selection of techniques is far from exhaustive of the 
methodological variety of policy studies. Nevertheless, this suite provides sharp 
insight into the different strategies to establish the tenability of a causal statement. 
As such, it can offer guidance beyond the boundaries of this book.

The edited format of the book aims at providing highly usable and solid knowl-
edge for policy assessment and evaluation to MA students, PhD students, scholars, 
and practitioners in policy-related fields. Thus, each chapter is authored by a recog-
nized scholar from different backgrounds, generations, and perspectives. Such a 
diverse yet “close-knit” team is essential to the volume. A single author could hardly 
have covered such a range of techniques with comparable expertise.

Public policies are tools and governance systems to tackle collective problems. 
Good policies call for a generation of open-minded scholars and practitioners will-
ing to understand and learn from research conducted in different fields and capable 
of handling the techniques in their toolbox consciously and carefully. We hope you 
will have a good time going through the chapters. Enjoy your journey!

MILANO, Milano, Italy� Alessia Damonte  
 � Fedra Negri  

Preface



vii

Acknowledgments

Every book is a collective enterprise and some more than others. Our first thanks go 
to the many students who have compelled this project and shaped it during our 
courses. They have been the real drivers of this effort, and we are more than grateful 
for how they kept our motivation high over the many months of writing and revis-
ing. Heartfelt thanks also go to Licia Papavero, Francesco Zucchini, and the board 
of the Ph.D. in Political Studies of the University of Milan. Their constant support 
to the Summer School in “Research Strategies in Policy Studies” (ReSPoS) has 
proven vital to the maturation of this project, which consolidates an experience dat-
ing back to 2013—now, a seemingly distant past. The School and the project, in 
turn, would not have been possible without the financial contributions of the 
Compagnia di San Paolo (Turin, Italy) through the Network for the Advancement of 
Social and Political Sciences (NASP) directed by Maurizio Ferrera. To them go our 
sincere gratitude. We also are greatly indebted to Springer’s Senior Editor for 
Economics, Political Science, and Public Administration, Lorraine Klimowich, 
and the Editor of the ‘Textbook on Political Analysis’ series, Justin Esarey. Their 
precious suggestions and faultless encouragement have been fundamental to final-
izing a project intentionally positioned at the crossroad of many disciplines and 
research standards. Our further debt of gratitude is owed to Luigi Curini and the 
Standing Groups “MetRiSP—Research Methods for Political Science” and 
“Political Science & Public Policy” of the SISP—Italian Society of Political 
Science. We have treasured their feedbacks on earlier versions and their backing the 
main idea. Finally, we gratefully acknowledge the financial support of Protego—an 
advanced project funded by the European Research Council—Grant agreement 
n°694632.

University of Milan� Alessia Damonte
Milan, Italy� Fedra Negri



ix

Contents

	1	 ��Introduction: The Elephant of Causation and the Blind Sages �����������       1
Alessia Damonte and Fedra Negri

	2	 ��Causation in the Social Realm�����������������������������������������������������������������     11
Daniel Little

	3	 ��Counterfactuals with Experimental  
and Quasi-Experimental Variation���������������������������������������������������������     37
Erich Battistin and Marco Bertoni

	4	 ��Correlation Is Not Causation, Yet… Matching  
and Weighting for Better Counterfactuals���������������������������������������������     71
Fedra Negri

	5	 ��Getting the Most Out of Surveys: Multilevel Regression  
and Poststratification �������������������������������������������������������������������������������     99
Joseph T. Ornstein

	6	 ��Pathway Analysis, Causal Mediation,  
and the Identification of Causal Mechanisms ���������������������������������������   123
Leonce Röth

	7	 ��Testing Joint Sufficiency Twice: Explanatory  
Qualitative Comparative Analysis�����������������������������������������������������������   153
Alessia Damonte

	8	 ��Causal Inference and Policy Evaluation  
from Case Studies Using Bayesian Process Tracing �����������������������������   187
Andrew Bennett

	9	 ��Exploring Interventions on Social Outcomes  
with In Silico, Agent-Based Experiments�����������������������������������������������   217
Flaminio Squazzoni and Federico Bianchi



x

	10	 ��The Many Threats from Mechanistic Heterogeneity  
That Can Spoil Multimethod Research �������������������������������������������������   235
Markus B. Siewert and Derek Beach

	11	 ��Conclusions. Causality Between Plurality and Unity ���������������������������   259
Alessia Damonte and Fedra Negri

Contents



1

Chapter 1
Introduction: The Elephant of Causation 
and the Blind Sages

Alessia Damonte and Fedra Negri

Abstract  What does a policy outcome hinge on? The response is vital to policy-
making and calls for the best of our knowledge from a variety of disciplines—from 
economics to sociology and from political science to public administration and 
management. The response entails a stance about causation, however, and almost 
every discipline has its own. Researchers are like the blind sages who had never 
come across the elephant of causation before and who develop their idea of the 
elephant by “touching” a different part of it. Which part of the elephant will you 
happen to touch? Will you be able to listen to and understand what the other sages 
will tell you?

1.1 � Policy Decisions and Causal Theories

The common wisdom about public policy understands them as governments’ deci-
sions to tackle a collective problem. These decisions deploy rules, information, 
taxes, and expenditures to get “people to do things that they might not otherwise do” 
or “do things that they might not have done otherwise” (Schneider & Ingram, 1990: 
513). By inducing a change in people’s willingness and capacity to “do things,” 
policy-makers expect the problem to disappear or, at least, take a more bear-
able shape.

It was six men of Indostan, To learning much inclined, Who 
went to see the Elephant (Though all of them were blind), That 
each by observation Might satisfy his mind. John G. Saxe 
(1816–1887).

A. Damonte (*) 
University of Milan, Milan, Italy
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Thus, the kernel of policy decisions is the causal theory that they encapsulate: 
first, of the behavior at the root of the collective problem; second and relatedly, of 
the capacity that certain tools have to make such behavior change for the better. The 
theory connects outcomes to behavior and then identifies the “carrots, sticks, and 
sermons” (Vedung, 2010) best suited to put or keep such behavior on a desirable 
track. For example, in their fight against cancer, governments can address smoking 
as a proven causal factor and assume people smoke if they have the wrong informa-
tion or are shortsighted about the consequences of their behavior—else, they would 
reasonably quit. Governments can fund education campaigns to convey the right 
information, require tobacco products to carry warning labels, or disallow tobacco 
advertising and sponsorship. Moreover, to compensate for people’s shortsighted-
ness, they can levy “sin taxes” upon tobacco products to make prices a better signal 
of the hidden costs of smoking or enforce smoke bans that protect non-smokers. 
Whether a government applies none, one, or a mix of these tools, in turn, depends 
on policy-makers; whether their decisions reach the addressees properly, instead, is 
an administrative and a governance matter (e.g., McConnell, 2010). Regardless of 
the point of attack, the issue of policy success and failure inevitably appeals to 
causal theories on endowments, concerns, constraints, and incentives accounting for 
behavior (e.g., Ostrom, 2005).

Policy studies offer exemplary illustrations of the twofold stake of causal theo-
ries. First, these theories allow us to make sense of the world. Our bewilderment at 
some diversity in performance dissolves when we are offered satisfying accounts of 
relevant behaviors. Second, these theories have straightforward practical implica-
tions for individual and collective strategies. If we know which factors compel an 
event and suppress it, we can change the event’s odds by controlling these factors. 
Then, the driving question remains: how can we get to know these factors well 
enough to build decisions on them?

1.2 � The Elephant of Causation

Across the philosophy of science and social sciences, the responses to this question 
invite analogies with the blind sages in Saxe’s poem (1872), who “prate about an 
Elephant that / Not one of them has seen.”1 Indeed, actual causation is the complex 
local production of an outcome and it is hard to identify before it unfolds. The 
usable knowledge of a causal process pinpoints the key factors of its unfolding that 
allow us to see it coming in the next instance and, eventually, change its odds (e.g., 
Craver and Kaplan, 2020). Such knowledge requires criteria to identify the key 

1 The poem tells the story of a group of blind sages who have never come across an elephant before 
and who learn what the elephant is like by touching it. Each blind sage feels a different part of the 
elephant’s body, but only one part. They then describe the elephant based on their limited experi-
ence and “Though each was partly in the right, /And all were in the wrong!” (Saxe, 1872).

A. Damonte and F. Negri
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causal factors beyond the single case and credibly so. Historically, guidelines for 
identifying the key causal factors developed along two lines.

1.2.1 � Elephants by the Principle

The most enduring guideline for determining the key causal factors before a process 
unfolds has come from the Aristotelian philosophy of science. There, causation was 
tracked back to four kinds of principles, known as “material,” “formal,” “efficient,” 
and “final.” The first two principles capture the structural features of a causal pro-
cess, namely, its constituent elements and the shape of their arrangement. The latter 
two refer to agency and locate the key factors in outer stimuli or the drive from inner 
purposes (e.g., Moravcsik, 1974). The original “doctrine” maintained that adequate 
responses to any why-question appealed to all the four principles together.

Indeed, convincing accounts still locate actual causation in the interplay of struc-
ture and agency, as influential mechanistic perspectives make clear (e.g., Little, 
2011; Craver, 2006). More often, current research streams specialize in single prin-
ciples. For example, the causal role of “material” ascriptive features is a driving 
concern of gender and minority studies. The generative power of formal arrange-
ments is the core tenet of, for instance, game theories. Studies on expected utility, 
values, habits, and emotions take heed of the final goals and motivations, providing 
fundamental assumptions for neo-institutionalist and behavioral approaches of vari-
ous stripes. Efficient factors are any stimulus, intervention, or treatment that can 
elicit a response; thus, they are central to theories of policy instruments, regimes, or 
political communication, among many others.

With some exceptions (e.g., Bache et al., 2012; Kurki, 2006), current theories 
seldom claim an explicit legacy with the original canon. The doctrine has fallen 
into disrepute as improperly scientific, because it invoked a metaphysical reason to 
justify the causal standing of its four principles. The tenet that individuals with 
similar features, in a similar situation, with similar motivations, under equivalent 
stimuli did and will behave in similar ways was justified by the belief that all 
embodied the same metaphysical essence. As Aristotle argued in a seminal frag-
ment, planets do not twinkle because planets are near things, and not twinkling was 
intrinsic to near things. Thus, the next planet will not twinkle, too, in force of its 
“near-thingness.”

This line of reasoning easily lends itself to circular arguments that restate general 
assumptions instead of probing them. As late as 1673, Molière still had reasons to 
satirize it. In his comedy The Hypochondriac, a “docto doctore” explains in dog 
Latin that opium makes people sleepy because it embodies a “dormitive virtue.” 
However, the ultimate criticism came from the British Empiricists, who saw in the 
appeal to essences a mode for preserving beliefs against evidence and a fundamen-
tal obstacle to progress and learning.

1  Introduction: The Elephant of Causation and the Blind Sages
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1.2.2 � Elephants by the Rules

The rejection of metaphysical warrants has called for a different ground for causal 
inference. Whether a reliable connection exists between being a near thing and not 
twinkling across cases, so the argument goes, it can only be decided empirically.

Yet, causal evidence does not come to us with labels and numbers attached. 
Assumptions are still needed about the empirical traces that distinguish between 
relevant and irrelevant causal factors. In Hume’s much-quoted words, causally rel-
evant is:

an object followed by another and where all the objects, similar to the first, are followed by 
objects similar to the second. Or, in other words, where, if the first object had not been, the 
second never had existed. (Hume, 1748, Section VII, Part II, §60).

In short, a factor is relevant to an outcome in the single case under two warrants: the 
association of the two conforms to a regular pattern, and it supports counterfactual 
reasoning.

1.2.2.1 � Regularity

The regularity warrant—“where all the objects, similar to the first, are followed by 
objects similar to the second”—renders the empirical footprint of Aristotelian 
essences without assuming them and builds on the repeated observation of similar 
occurrences.

All objects sharing the same feature are similar and constitute a distinct class. 
Regularity, then, is established between objects in different classes—for instance, in 
the class of “swan” and in the class of “white.” It requires that any observation of the 
first class entails one in the second. When the regularity holds, causal knowledge 
can be circulated through handy formulae such as “if a swan, then white.”

To apply to the next instance, these formulae have to prove faultless, which is 
hardly the case: classes and gauges are human constructs and can prove too strict or 
liberal to capture actual causation in the next instance. Hence, regularity holds pro-
visionally only until we meet the black swan that forces a revision of the scope of 
our regularity tenets.

Regularity may also seem perfect just because we measured two consequences 
of the same process. These relationships are useful for prediction; however, they do 
not qualify as causal as they do not grant control over the events’ odds as desired in 
public policy. Indeed, a barometric reading can be relied upon to prepare for extreme 
weather conditions but does not license the belief that the coming storm can be 
tamed by forcing the barometer’s pointer. Thus, regularity can be a necessary trait 
of usable knowledge but insufficient to declare the causal standing of a 
relationship.

A. Damonte and F. Negri
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1.2.2.2 � Counterfactual

The counterfactual—“where, if the first object had not been, the second never had 
existed”—enters the picture as the additional warrant to establish causal relevance 
and ideally applies to the factor in the single case independent of regularity. The 
warrant borrows from the classical rules of argumentation and the indirect proofs in 
geometric demonstrations; however, it displays an empirical edge. Counterfactuals 
link causal relevance to evidence that we could compel a change in the second 
object by manipulating the first.

From the Humean definition, manipulation is usually understood as suppression; 
more generally, it means switching the observed state of a feature into its opposite. 
Thus, counterfactual reasoning requires, first, that we imagine the first object with 
the switched feature and, then, that we can only draw impossible or contradictory 
conclusions from it (e.g., Levi, 2007). An exemplary illustration comes directly 
from Hume. Despite his deep skepticism toward the human mind’s ability to fully 
understand causation, he conceded that our intuitions must be somehow right. To 
justify his claim, he reasoned that had our mind always got causation wrong (switch-
ing the feature), then humankind would have long gone extinct (drawing a conclu-
sion), which contrasts with us thriving as a species (showing the conclusion absurd). 
Such counterfactual criterion improves on the regularity test, as regular non-causal 
features fail it: as a broken barometer cannot stop a storm, it cannot be recognized 
as having any causal standing.

However, counterfactuals have their limits, too. First, they cannot be established 
unless all the plausible alternative causes of the same outcome are ruled out. Hume’s 
argument does not exclude that humankind’s evolutionary success instead depends 
on, for instance, sheer luck—and the unaccounted alternative undermines the 
cogency of its conclusion. The second and related issue is serious to the point of 
earning the title of “fundamental problem of causal inference” in some quarters 
(e.g., Holland, 1988). Unless we cast the same causal process in the same unit with 
and without the feature of interest, we cannot establish whether switching the fea-
ture can change the outcome.

1.3 � The Blind Sages’ Portrayals as the Book’s Blueprint

The criteria to establish causation by regularity and counterfactual evidence seem as 
straightforward as impossible to meet. Nevertheless, techniques have been devel-
oped as strategies to circumvent the Humean paradoxes and provide empirical war-
rants to the claim of causal relevance. As Little shows in Chap. 2, technical 
specialization has undermined the dialogue among techniques and their findings. 
The appeal to regularity, counterfactual, or mechanistic principles has turned into as 
many ultimate understandings of causation: “laws” and counterfactuals offered a 

1  Introduction: The Elephant of Causation and the Blind Sages
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rival ground for experimental practices; mechanisms took distances from both and 
licensed causal analysis in actual cases only, under consideration that any conclu-
sion about aggregates necessarily entails an unfaithful reduction—in the end, all 
models are wrong.

However, the possibility of integration remains when techniques commit to three 
considerations and are consistent with a reasonable scientific realism. First, causa-
tion is real, but our best knowledge of it remains a useful approximation. Second, 
regularity and counterfactuals are epistemic criteria to establish whether portrayals 
qualify as valid causal accounts; mechanisms are ontological assumptions about 
single actual elephants instead. Third, the difference between mechanistic descrip-
tion, models, and laws is not of kind but degree: when they address a common slice 
of the world, they provide a map of it with different details, abstraction, and scope. 
Under these commitments, techniques can be understood as devices to respond to 
special questions about the elephant.

1.3.1 � Can this Single Factor Make Any Difference?

The family of experimental and quasi-experimental techniques offers the most 
renowned, successful, and contentious example at once due to the diffusion of ran-
domized controlled trials as the “gold standard” of scientific knowledge production 
(e.g., Kabeer, 2020; Deaton & Cartwright, 2018; Dawid, 2000). This family shares 
the consideration that although we cannot observe a counterfactual directly, we can 
construe credible “twin worlds” and “treat” one so that the feature of interest pro-
vides the only difference to which the difference in responses can be ascribed.

As Battistin and Bertoni show in Chap. 3, this strategy keeps the role of causal 
assumptions to the minimum required by a stimulus-response model: the treatment 
is a supposedly efficient cause and connected to performance by a function of a 
specific shape—often, linear—without further details. Unsurprisingly, these tech-
niques are a cornerstone of usable public policy knowledge: they can establish the 
capacity of a change in taxation, expenditure, information, and regulation to elicit 
some effect of interest, apparently without the need for further knowledge.

The credibility of this strategy’s conclusions, however, rests heavily on the 
research design: findings are sound if the twin worlds are construed as statistically 
identical and independent aggregates, the treatment is forced evenly onto all the 
units of one world only, and the difference in responses is not affected by the treat-
ing procedure or unrelated endogenous dynamics. The threats arise as the statistical 
aggregates with identical parameters can hide a remarkable inner heterogeneity that 
may bias both groups’ responses in unknown directions. As elaborated by Negri in 
Chap. 4 and Ornstein in Chap. 5, within the family, this heterogeneity is addressed 
as the result of selection biases that can be reduced by accounting for observed 
imbalances and crafting “populations of twins.” The solution, however, leaves the 
issue open of the bending effects from unobservable factors.

A. Damonte and F. Negri
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The (quasi-)experimental family, in short, can provide reliable measures of the 
net effect of a treatment, but necessarily at the cost of disregarding the reasons for 
the diversity in the responses of the treated.

1.3.2 � Through Which Structures?

The diversity in responses is instead the driving concern of the second group of 
techniques. They address it by flipping the experimental balance of model and 
design and committing themselves to additional assumptions. They conceive of the 
generative process as patterns of dependence and assign causal relevance to the 
bundle of factors that fit them.

The reliance on models sidelines the issue of unit selection as, ideally, any unit 
carries usable information about the tenability of the causal structure of interest. 
The structure, moreover, provides the fixed points that still make counterfactuals 
observable. However, models require criteria to select meaningful variables, and 
structural assumptions provide partial guidance to it. The main decisions can only 
be made in light of substantive theories about the generation of the outcome—
hence, of some previous local knowledge. Within this framework, each technique 
relies on different languages and pursues different goals.

Path analysis develops within a Bayesian mindset and understands causation as 
ordered dependencies fitting a few known shapes: chains, colliders, and forks. As 
Röth clarifies in Chap. 6, these shapes explain because they elaborate on the con-
nection between an alleged causal condition and the dependent by displaying the 
intermediate causal link, the common factor, or the equivalent alternative factors 
that support the hypothesis about the unfolding of the causal process before the 
outcome. The technique supports a neater identification of the mechanism linking a 
factor of interest and its outcome, affords counterfactual analysis, and provides spe-
cific suggestions about the “scope conditions” ensuring the mechanisms. Röth con-
tends that these features qualify path analysis as the natural companion of 
experimental studies for its capacity to establish the contextual requirements that 
enhance and refine the validity of their findings.

Qualitative comparative analysis (QCA) instead builds on sets and Boolean alge-
bra and understands causal structures as teams of individually necessary and jointly 
sufficient factors to an outcome. In Chap. 7, Damonte makes three points about the 
explanatory import of the technique. First, its assumptions about the shape of causa-
tion support complex causal theories about the interactions of triggering, enabling, 
or shielding conditions of some underlying causal process. Second, its parameters 
of fit allow diagnosing the underspecification of the theory to the cases at hand, 
while the algorithm provides a pruning counterfactual device that takes care of its 
overspecification. Last, sets remap qualities onto quantities, which warrant mean-
ingful and sound solutions. Thus, QCA can formalize and test theories about the 
teams of conditions beneath policy success and failure across given cases beyond 

1  Introduction: The Elephant of Causation and the Blind Sages
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special processes. As such, the technique especially suits the purpose of systematic 
ex-post evaluation of policy designs.

1.3.3 � Through Which Process?

The knowledge of the dynamics of a causal situation is the missing piece of knowl-
edge and the core concern of two further strategies, aiming to open up the black box 
of causation. Both share the direct interest in the actors and their interplay as the 
ultimate ground of causation, although their point of attack within the causal stream 
of actions is different.

Bayesian process tracing addresses causation within its local context. In Chap. 8, 
Bennett shows how analysts can rely on this technique to make causal sense of the 
chain of events to policy success or failure retrospectively. The strategy understands 
hypotheses as plausible Bayesian beliefs that we can entertain about the causal pro-
cess and that evidence can confirm or disconfirm. The weight of evidence rests on 
the assumption that each hypothesis corresponds to a specific sequence of actions 
and events that leave empirical traces. When the connection between a piece of 
evidence and a hypothesis is unique, certain, or both, the actual retrieval of certain 
traces in a case contributes to ranking hypotheses by their relative likelihood and 
eventually licenses the ascription of the case to the hypothesis with the best standing.

Last but not the least, agent-based models make it possible to test hypotheses 
about causal processes as emergent phenomena in silico. As Squazzoni and Bianchi 
illustrate in Chap. 9, the technique relies on simulation to verify whether a certain 
alignment of assumptions about actors and their constraints, when translated into 
conditional rules of individual behavior and recursively played, returns performance 
values close to the empirical responses of actual systems. The strategy requires 
regularity and counterfactual assumptions about the options available to each agent, 
rendered as alternative states, and about the consequence of choosing a state condi-
tional on the states of the relevant neighbors. These models shed light on the tenabil-
ity of different understandings of the mechanism that alternative policy constraints 
or endowments activate in the field.

1.3.4 � Considerations and Extensions

The order of the chapters, as Beach and Siewert reason in their Chap. 10, chimes 
with the common prescription in mixed method research that a better causal knowl-
edge follows from a succession of techniques zooming into individual cases, where 
causation unfolds as actual processes and explanations can find their ultimate vali-
dation. However, they consider the downward path of mixed methods lays knowl-
edge open to heterogeneity threats. The actual heterogeneity is always equal to the 
number of instances under analysis; cross-case knowledge, however, requires that 
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we dismiss some heterogeneity as irrelevant to afford comparisons and causal infer-
ences. The move to local contexts implies a twofold shift—from a low to a high 
number of factors in the analysis and from coarse types to fine-grained tokens of 
evidence—that seldom support cross-case findings. Hence, they contend that a 
more fruitful and conventional strategy follows the upward path from local pro-
cesses over structures to the causal capacity of single triggers. This path allows 
more conscious decisions about heterogeneity that can improve models and gauges.

In Chap. 11, Damonte and Negri conclude the journey. The chapter recognizes 
the fragmented image of causation that the previous contributions convey and asks 
whether such fragmentation is an undesirable state of affairs, as claimed by a long-
honored narrative from the history of science, or an eventually valuable situation, as 
argued in the pluralist quarters of the philosophy of science. The point of contention 
concerns the inability to yield dovetailing knowledge that would affect strategies 
built on alternative tenets. The chapter revises these tenets and contends that, 
whereas ontology offers complementary angles of attack to the causal elephant and 
epistemology licenses interpretations that can estrange research communities from 
one another, methodological reasoning about models and designs reconciles the 
analyses when it emphasizes that causation corresponds to a few recognized shapes. 
These shapes, the chapter concludes, offer a rough yet common map of the elephant 
that strategies of any stripe can detail and enrich while pursuing their special 
research interests—thus contributing to better policy knowledge. 
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Chapter 2
Causation in the Social Realm

Daniel Little

Abstract  Explanation is at the center of scientific research, and explanation almost 
always involves the discovery of causal relations among factors, conditions, or 
events. This is true in the social sciences no less than in the natural sciences. But 
social causes look quite a bit different from causes of natural phenomena. They 
result from the choices and actions of numerous individuals rather than fixed natural 
laws, and the causal pathways that link antecedents to consequents are less exact 
than those linking gas leaks to explosions. It is, therefore, a crucial challenge for the 
philosophy of social science to give a compelling account of causal reasoning about 
social phenomena that does justice to the research problems faced by social 
scientists.

Learning Objectives
By studying this chapter, you will:

•	 Gain exposure to philosophical theories of causal explanation.
•	 Learn how “ontology” is important in social research.
•	 Learn about the theory of causal mechanisms.
•	 Become acquainted with how several causal research methodologies relate to 

social ontology.
•	 Become acquainted with scientific realism as an approach to social research.

2.1 � Why Discuss the Ontology of Causation?

Ontology precedes methodology. We cannot design good methodologies for scien-
tific research without having reasonably well-developed ideas about the nature of 
the phenomena that we intend to investigate (Little, 2020). This point is especially 
important in approaching the idea of social causation. Only when we have a reason-
ably clear understanding of the logic and implications of the scientific idea of 
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causality can we design appropriate methods of inquiry for searching out causal 
relations. And only then can we give a philosophically adequate justification of 
existing methods—that is, an account of how the research method in question cor-
responds to a sophisticated understanding of the nature of the social world.

Here I will work within the framework of an “actor-centered” view of social 
ontology (Little, 2006, 2014, 2016). On this view, the social realm is constituted by 
individual actors who themselves have been cultivated and developed within ongo-
ing social relations and who conduct their lives and actions according to their under-
standings and purposes. Social structures, social institutions, organizations, 
normative systems, cultures, and technical practices all derive their characteristics 
and causal powers from the socially constituted and situated individuals who make 
them up (Little, 2006).

This fact about social entities and processes suggests a high degree of contin-
gency in the social world. Unlike chemistry, the social world is not a system of law-
governed processes; it is instead a mix of different sorts of institutions, forms of 
human behavior, natural and environmental constraints, and contingent events. The 
entities that make up the social world at a given time and place have no essential 
ontological stability; they do not fall into “natural kinds”; and there is no reason to 
expect deep similarity across a number of ostensibly similar institutions—states, for 
example, or labor unions. The “things” that we find in the social world are hetero-
geneous and contingent. And the metaphysics associated with classical thinking 
about the natural world—laws of nature; common, unchanging structures; and fully 
predictable processes of change—do not provide appropriate building blocks for 
our understandings and expectations of the social world nor do they suggest the 
right kinds of social science theories and constructs.

Instead of naturalism, this actor-centered approach to social ontology leads to an 
approach to social science theorizing that emphasizes agency, contingency, and 
plasticity in the makeup of social facts. It recognizes that there is a degree of pattern 
in social life, but emphasizes that these patterns fall far short of the regularities 
associated with laws of nature. It emphasizes contingency of social processes and 
outcomes. It insists upon the importance and legitimacy of eclectic use of multiple 
social theories: social processes and entities are heterogeneous, and therefore, it is 
appropriate to appeal to different types of social theories as we explain various parts 
of the social world. It emphasizes the importance of path dependence in social 
outcomes.

(continued)

Box 2.1 Definitions
Agency: The fact that social change and causation derives from the purposive 
actions of individual social actors.

Contingency: Social outcomes depend upon conjunctions of occurrences 
that need not have taken place, so the outcome itself need not have taken 
place. Closely related to “path dependency.”
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How does this ontological perspective fit with current work in policy studies? There 
are several current fields of social research that illustrate this approach particularly 
well. One is the field of the “new institutionalism.” Researchers in this tradition 
examine the specific rules and incentives that constitute a given institutional setting. 
They examine the patterns of behavior that these rules and incentives give rise to in 
the participants in the institution, and they consider as well the opportunities and 
incentives that exist for various powerful actors to either maintain the existing insti-
tutional arrangements or modify them. Kathleen Thelen’s (2004) study of different 
institutions of skill formation in Germany, Great Britain, the United States, and 
Japan is a case in point. This approach postulates the causal reality of institutions 
and the specific ensembles of rules, incentives, and practices that make them up; it 
emphasizes that differences across institutions lead to substantial differences in 
behavior; and it provides a basis for explanations of various social outcomes. The 
rules of liability governing the predations of cattle in East Africa or Shasta County, 
California, create very different patterns of behavior in cattle owners and other land-
owners in the various settings (Ellickson, 1991). It is characteristic of the new insti-
tutionalism that researchers in this tradition generally avoid reifying large social 
institutions and look instead at the more proximate and variable sets of rules, incen-
tives, and practices within which people live and act.

2.2 � Scientific Realism About the Social World 
and Social Causation

We are best prepared for the task of discovering causal relationships in the social 
world when we adopt a realist approach to the social world and to social causation. 
We provide an explanation of an event or pattern when we succeed in identifying the 
real causal conditions and events that brought it about. The central tenet of causal 

Box 2.1  (continued)
Path dependency: The feature of social processes according to which 

minor and underdetermined events in an early stage of a process make later 
changes more probable. For example, the QWERTY arrangement of the type-
writer keyboard was selected in order to prevent typists from jamming the 
mechanism by typing too rapidly. Fifty years later, after widespread adoption, 
it proved impossible to adopt a more efficient arrangement of the keys to per-
mit more rapid typing.

Plasticity: A feature of an entity or group of entities according to which 
the properties of the entity can change over time. Biological species demon-
strate plasticity through evolution, and social entities demonstrate plasticity 
through the piecemeal changes introduced into them by a variety of actors and 
participants.

2  Causation in the Social Realm
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realism is a thesis about causal mechanisms and causal powers. Causal realism 
holds that we can only assert that there is a causal relationship between X and Y if 
we can offer a credible hypothesis of the sort of underlying mechanism that con-
nects X to the occurrence of Y. The sociologist Mats Ekström puts the view this 
way: “the essence of causal analysis is … the elucidation of the processes that gen-
erate the objects, events, and actions we seek to explain” (Ekström, 1992: 115). 
Authors who have urged the centrality of causal mechanisms for explanatory pur-
poses include Roy Bhaskar (1975), Nancy Cartwright (1989), Jon Elster (1989), 
Rom Harré and Madden (1975), Wesley Salmon (1984), and Peter Hedström (2005).

Scientific realism about social causes comes down to several simple ideas.
First, there is such a thing as social causation. Causal realism is a defensible posi-

tion when it comes to the social world: there are real causal relations among social 
factors (structures, institutions, groups, norms, and salient social characteristics like 
race or gender). We can give a rigorous interpretation to claims like “racial discrimi-
nation causes health disparities in the United States” or “rail networks cause changes 
in patterns of habitation.”

Second, causal relations among factors or events depend on the existence of real 
social-causal mechanisms linking cause to effect. Discovery of correlations among 
factors does not constitute the whole meaning of a causal statement. Rather, it is 
necessary to have a hypothesis about the mechanisms and processes that give rise to 
the correlation. Hypotheses about the causal mechanisms that exist among factors 
of interest permit the researcher to exclude spurious correlation (cases where varia-
tions in both factors are the result of some third factor) and to establish the direction 
of causal influence (cases where it is unclear whether the correlation between A and 
B results from A causing B or B causing A). So mechanisms are more fundamental 
than regularities.

Third, the discovery of social mechanisms in policy studies often requires the 
formulation of mid-level theories and models of these mechanisms and processes—
for example, the theory of free-riders. For example, an urban policy researcher may 
observe that racially mixed high-poverty neighborhoods have higher levels of racial 
health disparities than racially mixed low-poverty neighborhoods. This is an obser-
vation of correlation. Researchers like Robert Sampson (2010) would like to know 
how “neighborhood effects” work in transmitting racial health disparities. What are 
the mechanisms by which a neighborhood influences the health status of an indi-
vidual household? In order to attempt to answer this question, Sampson turns to 
mid-level hypotheses in urban sociology that contribute to a theory of the mecha-
nisms involved in this apparent causal relationship. By mid-level theory, I mean 
essentially the same thing that Robert Merton (1963) conveyed when he introduced 
the term: an account of the real social processes that take place above the level of 
isolated individual action but below the level of full theories of whole social sys-
tems. Marx’s theory of capitalism illustrates the latter; Jevons’s theory of the indi-
vidual consumer as a utility maximizer illustrates the former. Coase’s theory of 
transaction costs (Coase, 1988) is a good example of a mid-level theory: general 
enough to apply across a wide range of institutional settings, but modest enough in 
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its claim of comprehensiveness to admit of careful empirical investigation. 
Significantly, the theory of transaction costs has spawned major new developments 
in the new institutionalism in sociology (Brinton & Nee, 1998).

And finally, it is important to recognize and welcome the variety of forms of 
social scientific reasoning that can be utilized to discover and validate the existence 
of causal relations in the social world. Properly understood, there is no contradiction 
between the effort to use quantitative tools to chart the empirical outlines of a com-
plex social reality, and the use of theory, comparison, case studies, process tracing, 
and other research approaches aimed at uncovering the salient social mechanisms 
that hold this empirical reality together.

2.2.1 � Critical Realism

Critical realism is a specific tradition within the late-twentieth-century analytic phi-
losophy that derives from the work of Rom Harré and Roy Bhaskar (Harré & 
Madden, 1975; Bhaskar, 1975; Archer et al., 2016). In brief, the view holds that the 
ontological stance of realism is required for a coherent conception of scientific 
knowledge itself. Unqualified skepticism about “unobservable entities” makes sci-
entific research and experimentation philosophically incoherent. We are forced to 
take the view that the entities postulated by our best theories of the world are 
“real”—whether electrons, viruses, or social structures. For Bhaskar, this ontologi-
cal premise has much the status of Kant’s transcendental arguments for causation 
and space and time: we cannot make sense of experience without postulating causa-
tion and locations in space and time (Bhaskar, 1975).

Concretely in the social sciences, this is taken to mean that we can be confident 
in asserting that social entities exist if these concepts play genuine roles in well-
developed and empirically supported theories of the social world: for example, 
organizations, markets, institutions, social classes, normative systems, rules, ideolo-
gies, and social networks. Further, we can be confident in attributing causal powers 
and effects to the various social entities that we have identified—always to be sup-
ported by empirical evidence of various kinds.

2.3 � What Is Causation?

Let us turn now to a more specific analysis of causation. What do we mean by a 
cause of something? Generally speaking, a cause is a circumstance that serves to 
bring about (or renders more probable) its effect, in a given environment of back-
ground conditions. Causes produce their effects (in appropriate background condi-
tions). A current fruitful approach is to understand causal linkages in terms of the 
specific causal mechanisms that link cause to effect.

2  Causation in the Social Realm
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We can provide a preliminary definition of causation along these lines:

•	 A causes B in the presence of Ci = def. A suffices to bring about B in the presence 
of conditions Ci (sufficiency).

•	 A causes B in the presence of Ci = def. If Ci were present but A had not occurred, 
then B would not have occurred (necessity).

That is, A is necessary and sufficient in conditions Ci for the production of 
B. This definition can be understood in either a deterministic version or a probabi-
listic version. The deterministic version asserts that A in the presence of Ci always 
brings about B; the probabilistic version asserts that the occurrence of A in the pres-
ence of Ci increases the likelihood of the occurrence of B.

There is a fundamental choice to be made when we consider the topic of causa-
tion. Are causes real, or are causal statements just summaries of experimental and 
observational results and the statistical findings that can be generated using these 
sets of data? The first approach is the position described above as causal realism, 
while the second can be called causal instrumentalism. If we choose causal realism, 
we are endorsing the idea that there is such a thing as a real causal linkage between 
A and B; that A has the power to produce B; and that there is such a thing as causal 
necessity. If we choose causal instrumentalism, we are agnostic about the underly-
ing realities of the situation, and we restrict our claims to observable patterns and 
regularities. The philosopher David Hume (2007) endorsed the second view; 
whereas many philosophers of science since the 1970s have endorsed the for-
mer view.

Most of the contributors to the current volume engage with the premises of 
causal realism. They believe that social causation is real; there are real social rela-
tions among social factors (structures, institutions, groups, norms, and salient social 
characteristics like race or gender), and there are real underlying causal mechanisms 
and powers that constitute those causal relations. According to scientific realists, a 
key task of science is to discover the causal mechanisms and powers that underlie 
the observable phenomena that we study.

Causal realists acknowledge a key intellectual obligation that goes along with 
postulating real social mechanisms: to provide an account of the ontological sub-
strate within which these mechanisms operate. In the social realm, the substrate is 
the system of social actors whose mental frameworks, actions, and relationships 
constitute the social world. This is what is meant by an “actor-centered” ontology of 
the social world. On this view, every social mechanism derives from facts about 
individual actors, the institutional context, the features of the social construction 
and development of individuals, and the factors governing purposive agency in spe-
cific sorts of settings. Different research programs in the social sciences target dif-
ferent aspects of this nexus.

This view of the underlying reality of social causation justifies a conception of 
causal necessity in the social realm. Do causes make their effects “necessary” in any 
useful sense? This is the claim that Hume rejected—the notion that there is any 
“necessary” connection between cause and effect. By contrast, the notion of natural 
necessity is sometimes invoked to capture this idea:
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•	 A causes B: given the natural properties of A and given the laws of nature and 
given the antecedent conditions, B necessarily occurs.

This can be paraphrased as follows:

•	 Given A, B occurs as a result of natural necessity.

So the sense of necessity of the occurrence of the effect in this case is this: given 
A and given the natural properties and powers of the entities involved, B had to 
occur. Or in terms of possible worlds and counterfactuals (Lewis, 1973), we can say:

•	 In any possible world in which the laws of nature obtain, when A occurs, B 
invariably occurs as well.

Applied to social causation within the context of an ontology of actor-centered 
social facts, here is what causal necessity looks like:

•	 Given the beliefs, intentions, values, and goals of various participants and given 
the constraints, opportunities, and incentives created by the social context, when-
ever A occurs, the outcome B necessarily occurs [financial crisis, ethnic vio-
lence, rapid spread of infectious disease …].

This conception aligns with Wesley Salmon’s idea of the “causal structure of the 
world,” applied to the social world (1984). And this in turn indicates why causal 
mechanisms are such an important contribution to the analysis of causation. A 
causal mechanism is a constituent of this “stream of events” leading from A to B.

Probabilistic causal relations involve replacing exceptionless connections among 
events with probabilistic connections among events. A has a probabilistic causal 
relationship to B just in case the occurrence of A increases (or decreases) the likeli-
hood of the occurrence of B. This is the substance of Wesley Salmon’s (1984) crite-
rion of causal relevance. Here is Salmon’s idea of causal relevance:

•	 A is causally relevant to B if and only if the conditional probability of B given A 
is different from the absolute probability of B (Salmon, 1984, adapted notation).

For a causal realist, the definition is extended by a hypothesis about an underly-
ing causal mechanism. For example, smoking is causally relevant to the occurrence 
of lung cancer [working through physiological mechanisms X, Y, Z]. And cell phys-
iologists are expected to provide the mechanisms that connect exposure to tobacco 
smoke to increased risk of malignant cell reproduction.

It is important to emphasize that we can be causal realists about probabilistic 
causes just as we can about deterministic causes. A causal power or capacity is 
expressed as a tendency to produce an outcome; but this tendency generally requires 
facilitating conditions in order to be operative. The causal power is appropriately 
regarded as being real, whether or not it is ever stimulated by appropriate events and 
circumstances. A given cube of sugar is soluble, whether or not it is ever immersed 
in water at room temperature.

These definitions have logical implications that suggest different avenues of 
research and inquiry in the social sciences. First, both the deterministic and the 
probabilistic versions imply the truth of a counterfactual statement: If A had not 
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occurred in these circumstances, B would not have occurred. (Or if A had not 
occurred in these circumstances, the probability of B would not have increased.) 
The counterfactual associated with a causal assertion suggests an experimental 
approach to causal inquiry. We can arrange a set of circumstances involving Ci and 
remove the occurrence of A and then observe whether B occurs (or observe the 
conditional probability of the occurrence of B).

Another important implication of a causal assertion is the idea of a set of neces-
sary and sufficient conditions for the occurrence of E, the circumstance of explana-
tory interest. With deterministic causation, the assertion of a causal relationship 
between A and B implies that A is sufficient for the occurrence of B (in the presence 
of Ci) and often the assertion implies that A is a necessary condition as well. (If A 
had not occurred, then B would not have occurred.) On these assumptions, a valid 
research strategy involves identifying an appropriate set of cases in which A, Ci, and 
B occur, and then observe whether the appropriate covariances occur or not. 
J. L. Mackie (1974) provided a more detailed analysis of the logic of necessary and 
sufficient conditions in complex conjunctural causation with his concept of an 
INUS condition: “insufficient but non-redundant part of an unnecessary but suffi-
cient condition” (62). Significantly, Mackie’s formulation provides a basis for a 
Boolean approach to discovering causal relations among multiple factors.

These definitions and logical implications give scope to a number of different 
strategies for investigating causal relationships among various conditions. For prob-
abilistic causal relationships, we can evaluate various sets of conditional probabili-
ties corresponding to the presence or absence of conditions of interest. For 
deterministic causal relationships, we can exploit the features of necessary and suf-
ficient conditions by designing a “truth table” or Boolean test of the co-occurrence 
of various conditions (Ragin, 1987). This is the logic of Mill’s methods of similarity 
and difference (Mill, 1988; Little, 1995). For both deterministic and probabilistic 
causal relationships, we can attempt to discover and trace the workings of the causal 
mechanisms that link the occurrence of A to the occurrence of B.

2.3.1 � Causal Mechanisms

As noted above, the central tenet of causal realism is a thesis about the real existence 
of causal mechanisms and causal powers. The fundamental causal concept is that of 
a mechanism through which A brings about or produces B (Little 2011). According 
to this approach, we can only assert that there is a causal relationship between A and 
B if we can offer a credible hypothesis of the sort of underlying mechanism that 
connects A to the occurrence of B. This is central to our understanding of causation 
from single-case studies to large statistical studies suggesting causal relationships 
between two or more variables. Peter Hedström and other exponents of analytical 
sociology are recent voices for this approach for the social sciences (Hedström, 
2005; Hedström & Ylikoski, 2010). An important paper by Machamer et al. (2000) 
sets the terms of current technical discussions of causal mechanisms, and James 
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Mahoney (2001) surveyed the various theories of causal mechanisms and called for 
a greater specificity.

What is a causal mechanism? Consider this formulation: a causal mechanism is 
a sequence of events, conditions, and processes leading from the explanans to the 
explanandum (Little, 1991: 15, 2016: 190–192). A causal relation exists between A 
and B if and only if there is a set of causal mechanisms that lead from A to B. This 
is an ontological premise, asserting that causal mechanisms are real and are the 
legitimate object of scientific investigation.

The theory has received substantial development in the biological sciences. 
Glennan et al. (2021) put the mechanisms theory in the form of six brief theses:

(1) �The most fruitful way to define mechanisms is that a mechanism for a phenomenon 
consists of entities (or parts) whose activities and interactions are organized so as to be 
responsible for the phenomenon.

(2) �Scientists can only discover, describe, and explain mechanisms through the construction 
of models, and these models are inevitably partial, abstract, idealized and plural.

(3) �Mechanistic explanations are ubiquitous across the empirical sciences.
(4) �Emphasizing that mechanistic explanations are ubiquitous in all scientific disciplines 

does not entail that all scientific explanations are mechanistic.
(5) �The diversity of kinds of mechanisms requires and explains the diversity of tools, strate-

gies and heuristics for mechanism discovery.
(6) �The mechanisms literature is a rich source of insights that can be used to address chal-

lenging reasoning problems in science, technology and evidence-based policy. 

This definition is developed for explanations in biology, but it works well with typi-
cal examples of social mechanisms.

The idea that there are real mechanisms embodied in a given domain of phenom-
ena provides a way of presenting causal relations that serves as a powerful alterna-
tive to the pure regularity view associated with Hume and purely quantitative 
approaches to causation. Significantly, this is the thrust of Judea Pearl’s develop-
ment of structural equation modeling (discussed below): in order to get a basis for 
causal inference out of a statistical analysis of a large dataset, it is necessary to 
provide a theory of the causal mechanisms and relations that are at work in this 
domain (Pearl, 2021).

Mechanisms bring about specific effects. For example, “over-grazing of the com-
mons” is a mechanism of resource depletion. Whenever the conditions of the mech-
anism are satisfied, the result ensues. Moreover, we can reconstruct why this would 
be true for purposive actors in the presence of a public good (Hardin, 1968). Or 
consider another example from the social sciences: “the mechanism of stereotype 
threat causes poor performance on standardized tests by specific groups” (Steele, 
2011). This mechanism is a hypothesized process within the cognitive–emotional 
system of the subjects of the test, leading from exposure to the stereotype threat 
through a specified cognitive–emotional mechanism to impaired performance on 
the test. So we can properly understand a claim for social causation along these 
lines: “C causes E” rests upon the hypothesis that “there is a set of causal mecha-
nisms that convey circumstances including C to circumstances including E.” In the 
social realm, we can be more specific. “C causes E” implies the belief that “there is 
a set of opportunities, incentives, rules, and norms in virtue of which actors in the 
presence of C bring about E through their actions.”

2  Causation in the Social Realm
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Are there any social mechanisms? There are many examples from every area of 
social research. For example: “Collective action problems often cause strikes to 
fail.” “Increasing demand for a good causes prices to rise for the good in a competi-
tive market.” “Transportation systems cause shifts of social activity and habitation.” 
“Recognition of mutual interdependence leads to medium-term social cooperation 
in rural settings.” In each case, we have a causal claim that depends on a hypothesis 
about an underlying behavioral, cognitive, or institutional mechanism producing a 
pattern of collective behavior.

The discovery of social mechanisms often requires the formulation of mid-level 
theories and models of these mechanisms and processes—for example, the theory 
of free-riders or the theory of grievance escalation in contentious politics. Mid-level 
theories in the social sciences can be viewed as discrete components of a toolbox for 
explanation. Discoveries about specific features of the workings of institutions, 
individual-collective paradoxes, failures of individual rationality like those studied 
in behavioral economics—all of these mid-level theories of social mechanisms can 
be incorporated into an account of the workings of specific social ensembles. The 
response of a university to a sudden global pandemic may be seen as an aggregation 
of a handful of well-known institutional dysfunctions, behavioral patterns, and cog-
nitive shortcomings on the part of the various actors.

Aage Sørensen summarizes a causal realist position for the social and policy sci-
ences in these terms: “Sociological ideas are best reintroduced into quantitative 
sociological research by focusing on specifying the mechanisms by which change 
is brought about in social processes” (Sørensen, 1998: 264). Sørensen argues that 
social explanation requires better integration of theory and evidence. Central to an 
adequate explanatory theory, however, is the specification of the mechanisms that 
are hypothesized to underlie a given set of observations. “Developing theoretical 
ideas about social processes is to specify some concept of what brings about a cer-
tain outcome—a change in political regimes, a new job, an increase in corporate 
performance, … The development of the conceptualization of change amounts to 
proposing a mechanism for a social process” (Sørensen, 1998: 239–240). If an edu-
cational policy researcher finds that there is an empirical correlation between 
schools that have high turnover of teaching staff and high dropout rates, it is very 
important to investigate whether there is a mechanism that leads from teacher turn-
over to student dropout. Otherwise, both characteristics may be the joint result of a 
third factor (inadequate school funding, for example). Sørensen makes the critical 
point that one cannot select a statistical model for analysis of a set of data without 
first asking the question, “What in the nature of the mechanisms do we wish to pos-
tulate to link the influences of some variables with others?” Rather, it is necessary 
to have a hypothesis of the mechanisms that link the variables before we can arrive 
at a justified estimate of the relative importance of the causal variables in bringing 
about the outcome.

Emphasis on causal mechanisms for adequate social explanation has several 
favorable benefits for policy research. Policy research is always concerned about 
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causation: what interventions can be made that would bring about different out-
comes? When policy researchers look carefully for the social mechanisms that 
underlie the processes that they study, they are in a much better position to diag-
nose the reasons for poor outcomes and to recommend interventions that will 
bring about better outcomes. Emphasis on the need for analysis of underlying 
causal mechanisms takes us away from uncritical reliance on uncritical statisti-
cal models.

2.3.2 � Causal Powers

Some philosophers of science have argued that substantive theories of causal pow-
ers and properties are crucial to scientific explanation. Leading exponents of this 
view include Rom Harré (Harré & Madden 1975), Nancy Cartwright (1989), and 
Stephen Mumford (2009). Nancy Cartwright places real causal powers and capaci-
ties at the center of her account of scientific knowledge (1989). As she and John 
Dupré put the point, “things and events have causal capacities: in virtue of the prop-
erties they possess, they have the power to bring about other events or states” (Dupré 
& Cartwright, 1988). Cartwright argues, for the natural sciences, that the concept of 
a real causal connection among a set of events is more fundamental than the concept 
of a law of nature. And most fundamentally, she argues that identifying causal rela-
tions requires substantive theories of the causal powers (“capacities”, in her lan-
guage) that govern the entities in question. Causal relations cannot be directly 
inferred from facts about association among variables. As she puts the point, “No 
reduction of generic causation to regularities is possible” (1989: 90). The impor-
tance of this idea for sociological research is profound; it confirms the notion shared 
by many researchers that attribution of social causation depends inherently on the 
formulation of good, middle-level theories about the real causal properties of vari-
ous social forces and entities.

Cartwright’s philosophy of causation points to the idea of a causal power—a set 
of propensities associated with a given entity that actively bring about the effect. 
The causal powers theory rests on the claim that causation is conveyed from cause 
to effect through the active powers and capacities that inhere in the entities making 
up the cause.

The idea of an ontology of causal powers is that certain kinds of things (metals, 
gases, military bureaucracies) have internal characteristics that lead them to interact 
causally with the world in specific and knowable ways. This means that we can 
sometimes identify dispositional properties that attach to kinds of things. Metals 
conduct electricity; gases expand when heated; military bureaucracies centralize 
command functions (Harré & Madden, 1975). Stephen Mumford and Rani Lill 
Anjum explore the philosophical implications of a powers theory of causa-
tion (2011).
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The language of causal powers allows us to incorporate a number of typical 
causal assertions in the social sciences: “Organizations of type X produce lower 
rates of industrial accidents”; “paramilitary organizations promote fascist mobiliza-
tion”; “tenure systems in research universities promote higher levels of faculty 
research productivity.” In each case, we are asserting that a certain kind of social 
organization possesses, in light of the specifics of its rules and functioning, a dispo-
sition to stimulate certain kinds of participant behavior and certain kinds of aggre-
gate outcomes. This is to attribute a specific causal power to species of organizations 
and institutions.

Sociologist James Coleman offered the view that we should distinguish carefully 
between macro-level social factors and micro-level individual action (Coleman, 
1990). He held that all social causation proceeded through three distinct paths: 
social factors that influence individual behavior, individuals who interact with each 
other and create new social facts, and the creation of new macro-level social factors 
that are the aggregate result of individual actions and interactions at the micro-level. 
Coleman did not believe that there were direct causal influences from one macro-
level social fact to another macro-level social fact. Coleman offered a diagram of 
this view, which came to be known as “Coleman’s boat” (Fig. 2.1). On this view, 
when we say that a certain social entity, structure, or institution has a certain power 
or capacity, we mean something reasonably specific: given its configuration, it cre-
ates an environment in which individuals commonly perform a certain kind of 
action. This is the downward strut in the Coleman’s boat diagram, labeled 1  in 
Fig. 2.1. This approach has two important consequences. First, social powers are not 
“irreducible”—rather, we can explain how they work by analyzing the specific envi-
ronment of formation and choice they create. And second, they cannot be regarded 
as deriving from the “essential” properties of the entity. Change the institution even 
slightly and we may find that it has very different causal powers and capacities. 
Change the rules of liability for open-range grazing and you get different patterns of 
behavior by ranchers and farmers (Ellickson, 1991).

Fig. 2.1  Coleman’s boat. 
(Author’s diagram after 
Coleman, 1990)
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2.3.3 � Manipulability and Invariance

Several other aspects of the causal structure of the world have been important in 
recent discussions of causality in the social sciences. Jim Woodward is a leading 
exponent of the manipulability (or interventionist) account. He develops his views 
in detail in his recent book, Making Things Happen: A Theory of Causal Explanation 
(2003). The view is an intuitively plausible one: causal claims have to do with judg-
ments about how the world would be if we altered certain circumstances. If we 
observe that the concentration of sulfuric acid is increasing in the atmosphere lead-
ing to acid rain in certain regions, we might consider the increasing volume of 
H2SO4 released by coal power plants from 1960 to 1990. And we might hypothesize 
that there is a causal connection between these facts. A counterfactual causal state-
ment holds that if X (increasing emissions) had not occurred, then Y (increasing 
acid rain) would not have occurred. The manipulability theory adds this point: if we 
could remove X from the sequence, then we would alter the value of Y. And this, in 
turn, makes good sense of the ways in which we design controlled experiments and 
policy interventions.

Woodward extends this analysis to develop the idea of a relationship that is 
“invariant under intervention.” This idea follows the notion of experimental testing 
of a causal hypothesis. We are interested in the belief that “X causes Y.” We look for 
interventions that change the state of Y. If we find that the only interventions that 
change Y, do so through their ability to change X, then the X–Y relation is said to be 
invariant under intervention, and X is said to cause Y (Woodward, 2003: 369–370). 
Woodward now applies this idea to causal mechanisms. A mechanism consists of 
separate components that have intervention–invariant relations to separate sets of 
outcomes. These components are modular: they exercise their influence indepen-
dently. And, like keys on a piano, they can be separately activated with discrete 
results. This amounts to a precise and novel specification of the meaning of “causal 
mechanism”: “So far I have been arguing that components of mechanisms should 
behave in accord with regularities that are invariant under interventions and support 
counterfactuals about what would happen in hypothetical experiments” (374).

A related line of thought on causal analysis is the idea of difference-making. This 
approach to causation focuses on the explanations we are looking for when we ask 
about the cause of some outcome. Here philosophers note that there are vastly many 
conditions that are causally necessary for an event but do not count as being explan-
atory. Lee Harvey Oswald was alive when he fired his rifle in Dallas; but this does 
not play an explanatory role in the assassination of Kennedy. Crudely speaking, we 
want to know which causal factors were salient and which factors made a difference 
in the outcome. Michael Strevens (2008) provides an innovative explication of this 
set of intuitions through the idea of “Kairetic” explanation, a formal way of identi-
fying salient causal factors out of a haystack of causally involved factors in the 
occurrence of an event guided by generality, cohesion, and accuracy. “To this end, I 
formulate a recipe that extracts from any detailed description of a causal process a 
higher level, abstract description that specifies only difference-making properties of 
the process” (Strevens 2008: xiii).

2  Causation in the Social Realm



24

2.4 � Pluralism About Causal Inquiry

This volume is concerned with the problem of causal inquiry and methods for the 
discovery of causal relations among factors. How can social researchers identify 
causal relations among social events and structures? The problem of causal infer-
ence is fundamental to methodology in the social and policy sciences. A well-
informed and balanced handbook of political science methodology is provided by 
Box-Steffensmeier et al. (2008). Here I will provide a brief discussion of several 
approaches to causal inferences in the social sciences that follows the typology 
offered there. Especially relevant is Henry Brady’s contribution to the volume 
(Brady, 2008).

In their introduction to the volume, Box-Steffensmeier, Brady, and Collier pro-
pose that there are three important kinds of questions to answer when we are inves-
tigating the idea of causal relations in the social world. First is semantic: what do we 
mean by statements such as “A causes B”? Second is ontological: what are the fea-
tures of the world that we intend to identify when we assert a causal relationship 
between A and B? And third is epistemological: through what kinds of investiga-
tions and processes of inference can we establish the likelihood of a causal assertion 
about the relationship that exists among two or more features of the social world? 
The last question brings us to scientific methodology and a variety of techniques of 
causal inquiry and inference. However, Box-Steffensmeier, Brady, and Collier are 
correct in asserting the prior importance of the other two families of questions. We 
cannot design a methodology of inquiry without having a reasonably well-developed 
idea of what it is that we are searching for, and that means we must provide reason-
able answers to the semantic and ontological questions about causation first. The 
editors also make a point that is central to the current chapter as well, in favor of a 
pluralism of approaches to the task of causal inquiry in the social sciences (2008: 
29). There is no uniquely best approach to causal inquiry in the social and policy 
sciences. The editors refer explicitly to a range of approaches that can be used to 
investigate causation in the social world: qualitative and quantitative investigation, 
small-n or large-n studies, experimental data, detailed historical narratives, and 
other approaches.

Henry Brady (2008) provides a useful typology of several families of methods of 
inquiry and inference that have developed within the social sciences and that find a 
clear place within the semantic and ontological framework of causation that is 
developed in this chapter. Brady distinguishes among “neo-humean regularity” 
approaches, counterfactual approaches, manipulation approaches, and mechanism 
approaches. And he shows how a wide range of common research methods in the 
social sciences fall within one or the other of these rubrics. Each of these families of 
approaches derives from a crucial feature of what we mean by a causal relationship: 
the fact that causes commonly produce their effects, giving rise to observable regu-
larities; the fact that causes act as sufficient and necessary conditions for their 
effects, giving rise to the possibility of making inferences about counterfactual sce-
narios; the fact that causes produce or inhibit other events, giving rise to the 
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possibility of intervening or manipulating a sequence of events; and the fact that 
causal relations are real and are conveyed by specific (unobservable) sequences of 
mechanisms leading from cause to effect, giving rise to the importance of attempt-
ing to discover the operative mechanisms.

Brady’s typology suggests a variety of avenues of causal inquiry that are possible 
in the social sciences, given the foregoing analysis of social causes. The ideas 
sketched in previous sections about the ontology of social causation support multi-
ple avenues for discovering causation. Causes produce their effects, causes work 
through mechanisms, causal relationships should be expected to result in strong 
associations among events, and causal necessity supports counterfactual reasoning. 
We can thus design methods of inquiry that take advantage of the various of onto-
logical characteristics of social causation.

First, the primacy of “real underlying causal mechanisms” suggests that direct 
research aimed at discovery of the social pathways through which a given outcome 
is produced by the actions of individual actors within given institutional and norma-
tive circumstances is likely to be fruitful. Theory formation about the “institutional 
logics” created by a given institutional setting can be supplemented by direct study 
of cases to attempt to identify the pathways hypothesized (Thornton et al., 2012). 
These insights into the ontology of causation provide encouragement for case-based 
methods of inquiry, including process tracing, comparative studies, and testing of 
middle-level social theories of mechanisms. This is a set of methodological ideas 
supporting causal inquiry developed in detail by George and Bennett (2005), 
Steinmetz (2004, 2007), and Ermakoff (2019).

Second, the logic of necessary and sufficient conditions associated with the 
concept of a cause implies methods of research based on experimentation and 
observation. If we hypothesize that X is a necessary condition for the occurrence 
of Y, we can design a research study that searches for cases in which Y occurs but 
X does not. Ragin (1987), Mill (1988), and Tarrow (2010) describe the logic of 
such cases. The logic of necessary and sufficient conditions also supports research 
designs based on experimental and quasi-experimental methods—research stud-
ies in which the researcher attempts to isolate the phenomenon of interest and 
observes the outcomes with and without the presence of the hypothetical causal 
factor. Woodward (2003) illustrates the underlying logic of the experimental 
approach.

John Stuart Mill’s methods of similarity and difference (1988) derive from this 
feature of the logic of causation. If we believe that A1 & A2 are jointly sufficient to 
produce B, we can evaluate this hypothesis by finding a number of cases in which 
A1, A2, and B occur and examine whether there are any cases where A1 & A2 are 
present but B is absent. If there is such a case, then we can conclude that A1 & A2 
are not sufficient for B. Likewise, if we believe that A3 is necessary for the occur-
rence of B, we can collect a number of cases and determine whether there are any 
instances where B occurs but A3 is absent. If so, we can conclude that W is not 
necessary for the occurrence of B.

2  Causation in the Social Realm
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2.4.1 � Case Studies and Process Tracing

Alexander George and Andrew Bennett (2005) argue for the value of a case study 
method of social research. The core idea is that investigators can learn about the 
causation of particular events and sequences by examining the events of the case in 
detail and in comparison with carefully selected alternative examples. Here is how 
George and Bennett describe the case study method:

The method and logic of structured, focused comparison is simple and straightforward. The 
method is “structured” in that the researcher writes general questions that reflect the 
research objective and that these questions are asked of each case under study to guide and 
standardize data collection, thereby making systematic comparison and cumulation of the 
findings of the cases possible. The method is “focused” in that it deals only with certain 
aspects of the historical cases examined. The requirements for structure and focus apply 
equally to individual cases since they may later be joined by additional cases. (George & 
Bennett, 2005: 67)

The case study method is designed to identify causal connections within a domain 
of social phenomena. How is that to be accomplished? The most important tool that 
George and Bennett describe is the method of process tracing. “The process-tracing 
method attempts to identify the intervening causal process—the causal chain and 
causal mechanism—between an independent variable (or variables) and the out-
come of the dependent variable” (206). Process tracing requires the researcher to 
examine linkages within the details of the case they are studying and then to assess 
specific hypotheses about how these links might be causally mediated.

2.4.2 � Quantitative Research Based on Observational Data

Quantitative studies of large populations are supported by this theory of causation, 
if properly embedded within a set of hypotheses about causal relations among the 
data. In his presentation of the logic of “structural equation modeling” (SEM) and 
causal inference, Judea Pearl (2000, 2021) is entirely explicit in stating that pure 
statistical analysis of covariation cannot establish causal relationships. In particular, 
Pearl argues that a causal SEM requires:

A set A of qualitative causal assumptions, which the investigator is prepared to defend on 
scientific grounds, and a model MA that encodes these assumptions. (Typically, MA takes 
the form of a path diagram or a set of structural equations with free parameters. A typical 
assumption is that certain omitted factors, represented by error terms, are uncorrelated with 
some variables or among themselves, or that no direct effect exists between a pair of vari-
ables.) (Pearl, 2021: 71)

Aage Sørensen takes a similar view and describes the underlying methodological 
premise of valid quantitative causal research in these terms:

Understanding the association between observed variables is what most of us believe 
research is about. However, we rarely worry about the functional form of the relationship. 
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The main reason is that we rarely worry about how we get from our ideas about how change 
is brought about, or the mechanisms of social processes, to empirical observation. In other 
words, sociologists rarely model mechanisms explicitly. In the few cases where they do 
model mechanisms, they are labeled mathematical sociologists, not a very large or impor-
tant specialty in sociology. (Sørensen, 2009: 370)

Purely quantitative studies do not establish causation on their own; but when pro-
vided with accompanying hypotheses about the mechanisms through which the 
putative causal influences obtain, quantitative study can substantially increase our 
confidence in inferences about causal relationships among factors. Quantitative 
methods for research on causation advanced significantly through the development 
of structural equation models (SEMs) and the structural causal model methodology 
described by Judea Pearl and others (Pearl, 2000; Pearl, 2009, 2021). This approach 
explicitly endorses the notion that quantitative methods require background assump-
tions about causal mechanisms: “one cannot substantiate causal claims from asso-
ciations alone, even at the population level—behind every causal conclusion there 
must lie some causal assumption that is not testable” (Pearl, 2009: 99).

2.4.3 � Randomized Controlled Trials 
and Quasi-experimental Research

The method of randomized controlled trials (RCT) is sometimes thought to be the 
best possible way of establishing causation, whether in biology or medicine or 
social science. An experiment based on random controlled trials can be described 
simply. It is hypothesized that:

(H) A causes B in a population of units P.
An experiment testing H is designed by randomly selecting a set of individuals 

from P into Gtest (the test group) and randomly assigning a different set of individu-
als from P into Gcontrol (the control group). Gtest and Gcontrol are exposed to A (the 
treatment) under carefully controlled conditions designed to ensure that the ambient 
conditions surrounding both tests are approximately the same. The status of each 
group is then measured with regard to B, and the difference in the value of B between 
the two groups is said to be the “average treatment effect” (ATE). If the average 
treatment effect is greater than zero, there is prima facie reason to accept H.

This research methodology is often thought to capture the logical core of experi-
mentation and is sometimes thought to constitute the strongest evidence possible for 
establishing or refuting a causal relationship between A and B. It is thought to rep-
resent a purely observational way of establishing causal relations among factors. 
This is so because of the random assignment of individuals to the two groups (so 
potentially causally relevant individual differences are averaged out in each group) 
and because of the strong efforts to isolate the administration of the test so that each 
group is exposed to the same unknown factors that may themselves influence the 
outcome to be measured. As Handley et  al. (2018) put the point: “Random 
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allocation minimizes selection bias and maximizes the likelihood that measured and 
unmeasured confounding variables are distributed equally, enabling any differences 
in outcomes between the intervention and control arms to be attributed to the inter-
vention under study” (Handley et al., 2018: 6). The social and policy sciences are 
often interested in discovering and measuring the causal effects of large social con-
ditions and interventions—“treatments”, as they are often called in medicine and 
policy studies. It might seem plausible, then, that empirical social science should 
make use of random controlled trials whenever possible, in efforts to discover or 
validate causal connections.

However, this supposed “gold standard” status of random controlled trials has 
been seriously challenged in the last several years. Serious methodological and 
inferential criticisms have been raised of common uses of RCT experiments in the 
social and behavioral sciences, and philosopher of science Nancy Cartwright has 
played a key role in advancing these criticisms. Cartwright and Hardie (2012) pro-
vided a strong critique of common uses of RCT methodology in areas of public 
policy, and Cartwright and others have offered convincing arguments to show that 
inferences about causation based on RCT experiments are substantially more lim-
ited and conditional than generally believed.

A pivotal debate among experts in a handful of fields about RCT methodology 
took place in a special issue of Social Science and Medicine in 2018. This volume 
is an essential reading for anyone interested in causal reasoning. Especially impor-
tant is Deaton and Cartwright (2018). The essence of their critique is summed up in 
the abstract: “We argue that the lay public, and sometimes researchers, put too much 
trust in RCTs over other methods of investigation. Contrary to frequent claims in the 
applied literature, randomization does not equalize everything other than the treat-
ment in the treatment and control groups, it does not automatically deliver a precise 
estimate of the average treatment effect (ATE), and it does not relieve us of the need 
to think about (observed or unobserved) covariates” (Deaton & Cartwright, 2018). 
Deaton and Cartwright provide an interpretation of RCT methodology that places it 
within a range of comparably reliable strategies of empirical and theoretical inves-
tigation, and they argue that researchers need to choose methods that are suitable to 
the problems that they study.

One of the key concerns they express has to do with extrapolating and general-
izing from RCT studies (Deaton & Cartwright, 2018: 3). A given RCT study is car-
ried out in a specific and limited set of cases, and the question arises whether the 
effects documented for the intervention in this study can be extrapolated to a broader 
population. Do the results of a drug study, a policy study, or a behavioral study give 
a basis for believing that these results will obtain in the larger population? Their 
general answer is that extrapolation must be done very carefully. “We strongly con-
test the often-expressed idea that the ATE calculated from an RCT is automatically 
reliable, that randomization automatically controls for unobservables, or worst of 
all, that the calculated ATE is true [of the whole population]” (Deaton & Cartwright, 
2018: 10).

The general perspective from which Deaton and Cartwright proceed is that 
empirical research about causal relationships—including 
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experimentation—requires a broad swath of knowledge about the processes, mech-
anisms, and causal powers at work in the given domain. Here their view converges 
philosophically with that offered by Pearl above. This background knowledge is 
needed in order to interpret the results of empirical research and to assess the degree 
to which the findings of a specific study can plausibly be extrapolated to other 
populations.

These methodological and logical concerns about the design and interpretation 
of experiments based on randomized controlled trials make it clear that it is crucial 
for social scientists to treat RCT methodology carefully and critically. Deaton and 
Cartwright agree that RCT experimentation is a valuable component of the toolkit 
of sociological investigation. But they insist that it is crucial to keep several philo-
sophical points in mind. First, there is no “gold standard” method for research in 
any field; rather, it is necessary to adapt methods to the nature of the data and causal 
patterns in a given field. Second, Cartwright (like most philosophers of science) is 
insistent that empirical research, whether experimental, observational, statistical, or 
Millian, always requires theoretical inquiry into the underlying mechanisms that 
can be hypothesized to be at work in the field. Only in the context of a range of theo-
retical knowledge is it possible to arrive at reasonable interpretations of (and gener-
alizations from) a set of empirical findings.

Many issues of causation in the social and policy sciences cannot be addressed 
in a controlled laboratory environment. In particular, in many instances, it is impos-
sible to satisfy the condition of random assignment of individuals to control and 
treatment groups. Much data available for social science and policy research is gath-
ered from government databases (Medicaid, Department of Education, Internal 
Revenue Service) and was assembled for statistical and descriptive purposes. 
Hypotheses about the causes of failing schools, ineffective prison reforms, or faulty 
regulatory systems are not amenable to the strict requirements of randomized con-
trolled trials. However, social and policy scientists have developed practical meth-
ods for probing causation in complex social settings using natural experiments, field 
experiments, and quasi-experiments.

Quasi-experiments, field experiments, and natural experiments are sometimes 
defined as “randomized controlled trials carried out in a real-world setting” (Teele, 
2014: 3). This definition is misleading, because the crucial feature of RCTs is absent 
in a quasi-experiment: the random assignment of units to control and treatment 
groups. What quasi-experiments have in common is an effort to replace random 
assignments of units to control and treatment groups with some other way of strati-
fying available data that would permit inference about cause and effect. Quasi-
experiments involve making use of observational data about similar populations that 
have been exposed to different and potentially causally relevant circumstances. The 
researcher then attempts to discover treatment effects based on statistical properties 
of the two groups. In this volume, Battistin and Bertoni (Chap. 3) describe an inge-
nious set of constructs to uncover the effects of cheating on educational perfor-
mance examination scores in Italy, based on what they refer to as “instrumental 
variables” and “regression discontinuity design.” The former is a component of the 
composition of the control group that can be demonstrated to be random. The 
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authors show how this randomness can be exploited to discover the magnitude of 
effects of the non-random components in the composition of the control group. The 
latter term takes advantage of the fact that some data sets (class size in Italy, for 
example) are “saw-toothed” with respect to a known variable. The example they use 
is the government policy in Italy that regulates class size. School populations 
increase linearly, but government policy establishes the thresholds at which a school 
is required to create a new class. So class size increases from the minimum to the 
maximum, then declines sharply, and continues. This fact can be exploited to exam-
ine school performance in classes currently near the minimum versus classes 
currently near the maximum. This approach removes school population size from 
the selection and therefore succeeds in removing a confounding causal influence, 
which is exactly what randomization was intended to do.

The reasoning illustrated in Battistin and Bertoni (Chap. 3) is admirable in the 
authors’ effort to squeeze meaningful causal inferences out of a data set that is 
awash with non-random elements. However, as Battistin and Bertoni plainly dem-
onstrate, it is necessary to be rigorously critical in developing and evaluating these 
kinds of research designs and inferences. Stanley Lieberson’s Making It Count 
(1985) formulates a series of difficult challenges for the logic of quasi-experimental 
design that continues to serve as a cautionary tale for quantitative social and policy 
research. Lieberson believes that there are almost always unrecognized forms of 
selection bias in the makeup of quasi-experimental research designs that potentially 
invalidates any possible finding. Cartwright and Hardie (2012) extend these critical 
points by underlining the limitations on generalizability (external validity) that are 
endemic to experimental reasoning. So selection bias is still a possibility that can 
interfere with valid causal reasoning in the design of a quasi-experiment.

What conclusions should we draw about experiments and quasi-experiments? 
What is the status of randomized controlled trials as a way of isolating causal rela-
tionships, whether in sociology, medicine, or public policy? The answer is clear: 
RCT methodology is a legitimate and important tool for sociological research, but 
it is not fundamentally superior to the many other methods of empirical investiga-
tion and inference in use in the social sciences. Methodologies supporting the 
design and interpretation of quasi-experiments are also subject to important meth-
odological cautions in the social science and policy studies. It is necessary to 
remain critical and reflective in assessing the assumptions that underlie any social 
science research design, including randomized controlled trials and sophisticated 
quasi-experiments.

2.4.4 � Generative Models and Simulation Methods

Advances in computational power and software have made simulations of social 
situations substantially more realistic than in previous decades. An early advance 
took place in general equilibrium theory, leading to a set of models referred to as 
“computable general equilibrium models.” Instead of using a three-sector model to 
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illustrate the dynamics of a general equilibrium model of a market economy, it is 
now feasible to embody assumptions for one hundred or more industries and work 
out the equilibrium dynamics of this substantially more realistic representation of 
an economic system using a computable model (Taylor, 1990). Of special interest 
for political scientists and policy scholars is the increasing sophistication of agent-
based models (de Marchi and Page, 2008). Kollman et al. (2003) provide a highly 
informative overview of the current state of the field in their Computational Models 
in Political Economy. They describe the chief characteristics of an agent-based 
model in these terms:

The models typically have four characteristics, or methodological primitives: 
agents are diverse, agents interact with each other in a decentralized manner, agents 
are boundedly rational and adaptive, and the resulting patterns of outcomes comes 
often do not settle into equilibria…. The purpose of using computer programs in 
this second role is to study the aggregate patterns that emerge from the “bottom up” 
(Kollman et al. 2003: 3).

An often-cited early application of agent-based models was Thomas Schelling’s 
segregation model. Schelling demonstrated that residential segregation was likely to 
emerge from a landscape in which two populations had tolerant but finite require-
ments for the ethnic composition of their neighborhoods (Schelling, 1978). A ran-
dom landscape populated with a mix of the two populations almost always develops 
into a segregated landscape of the populations after a number of iterations. Agent-
based models can be devised to provide convincing “generative” explanations of a 
range of collective phenomena; and when developed empirically by calibrating the 
assumptions of the model to current empirical data, their results can result in rea-
sonable predictions about the near-term future of a given social phenomenon 
(Epstein, 2006).

We can look at ABM simulation techniques as a form of “mechanisms” theory. 
A given agent-based model is an attempt to work out the dynamics of individual-
level actions at the meso- and macro-level; and this kind of result can be interpreted 
as an empirically grounded account of the mechanisms that give rise to a given kind 
of social phenomenon. This feature of agent-based model methodology gives 
researchers yet another tool through which to probe the social world for causal rela-
tions among social features.

2.5 � Realism and Methodological Pluralism

Let us draw to a close. Here are some chief features of social science research that 
proceeds in ways consistent with this realist view of causation in the social world:

•	 Productive social science research makes use of eclectic multiple theories and do 
not expect a unified social theory that explains everything.

•	 Realist social scientists are modest in their expectations about social 
generalizations.
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•	 They look for causal mechanisms as a basis for social explanation.
•	 They anticipate heterogeneity and plasticity of social entities.
•	 They are prepared to use eclectic methodologies—quantitative, comparative, 

case study, ethnographic—to discover the mechanisms and mentalities that 
underlie social change.

•	 Causal reasoning requires background theories about causal relationships in the 
domain under study. These theories are corrigible, but some set of assumptions 
about “the causal structure of the world” is unavoidable.

Central in these ideas is the value of methodological pluralism. The ultimate goal 
of research in the social and policy sciences is to discover causal relationships and 
causal mechanisms. We want to know how the social world works and how we 
might intervene to change outcomes that are socially undesirable. There are a wide 
range of methods of inquiry and validation that are used in the social sciences: eth-
nographic methods (interviews and participant observation), case study analysis, 
comparative case study research, models and simulations of social arrangements of 
interest, and large-scale statistical studies. The philosophical position of method-
ological pluralism is the idea that there is a place in social and policy research for 
all of these tools and more besides. What holds them together is the fact that in each 
case, our ultimate concern is to discover the causal relationships that appear to hold 
in the social world and the mechanisms that underlie these relationships.

The central conclusion to be drawn here is that multiple methods of empirical 
investigation are available, and our research efforts will be most productive when 
we are able to connect empirical findings with hypotheses about social-causal 
mechanisms that are both theoretically and observationally supported. And equally 
importantly, it is crucial for researchers from different methodological traditions to 
interact with each other so that their underlying assumptions about causation and 
causal inference can be refined and validated.

Review Questions

	1.	 What is an “actor-centered” approach to social explanation and policy research?
	2.	 What is a social mechanism? Can you give an example or two?
	3.	 Why is the assumption of random assignment of subjects to control and treat-

ment groups so important for the design of an experiment?
	4.	 What is an agent-based model? Why is it useful in trying to discover causes in 

the social world?
	5.	 What is the difference between “ontology” and “methodology” in the social 

sciences?
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Chapter 3   
Counterfactuals with Experimental 
and Quasi-Experimental Variation             

Erich Battistin and Marco Bertoni 

Abstract  Inference about the causal effects of a policy intervention requires 
knowledge of what would have happened to the outcome of the units affected had 
the policy not taken place. Since this counterfactual quantity is never observed, the 
empirical investigation of causal effects must deal with a missing data problem. 
Random variation in the assignment to the policy offers a solution, under some 
assumptions. We discuss identification of policy effects when participation to the 
policy is determined by a lottery (randomized designs), when participation is only 
partially influenced by a lottery (instrumental variation), and when participation 
depends on eligibility criteria making a subset of participant and non-participant 
units as good as randomly assigned to the policy (regression discontinuity designs). 
We offer guidelines for empirical analysis in each of these settings and provide 
some applications of the methods proposed to the evaluation of education policies.    

Learning Objectives 
By studying this chapter, you will:

•	 Learn to speak the language of potential outcomes and counterfactual impact 
evaluation.

•	 Grasp different concepts of validity of a research design.
•	 Understand why randomization helps to detect causal effects.
•	 Discover how to exploit natural experiments and discontinuities to learn about 

causality when proper experiments are not feasible.
•	 Discuss the credibility of the assumption underlying different empirical 

strategies.  
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3.1   �Introduction 

Do smaller classes yield better school outcomes? To answer this and many similar 
questions, one needs to compare the outcome in the status quo (a large class) to 
the outcome that would have been observed if the input of interest was set to a 
different level (a small class). The comparison of students enrolled in small and 
large classes is always a tempting avenue to answer this causal question. As this 
comparison involves different students, its validity rests on the assumption that 
students currently enrolled in small and large classes would have presented the 
same outcome, on average, had they been exposed to the same number of class-
mates. This remains an untestable assumption that must be discussed on a case-
by-case basis. 

The chapter discusses ways to combine policy designs and data to corroborate 
the validity of this assumption. Sections 3.2 and 3.3 introduce the counterfactual 
causal analysis talk. They describe the concepts of treatments, potential outcomes 
and causal effects, and the attributes characterizing the validity of a research design. 
Section 3.4 is about the beauty and limitations of randomized assignment to “treat-
ment” (e.g., a small class) and paves the way for the discussion in the following 
sections. Specifically, these sections deal with methods for causal reasoning when 
randomization is not feasible. Section 3.5 provides an example of instrumental vari-
ation in treatment assignment arising from a natural experiment. Section 3.6 is 
devoted to the closest cousin to randomization, the regression discontinuity design. 
Section 3.7 offers some concluding remarks. 

Our discussion of empirical methods for causal reasoning is far from exhaustive. 
For example, we do not discuss research designs that exploit longitudinal data and 
rely on assumptions on pre-treatment outcome trends (e.g., difference-in-differences 
and synthetic control methods). Similarly, we do not cover matching methods (see 
Chap. 4 of this volume). In addition, our presentation will mostly focus on the rea-
soning underlying design-based identification and will only barely touch issues 
related with estimation. The interested reader can refer to the book by Angrist and 
Pischke (2008) for a discussion of these topics.  

3.2   �Causation and Counterfactual Impact Evaluation: 
The Jargon 

It is useful to start by clarifying what we mean by “causes” and “treatment effects.” 
We consider a population of units indexed by i, with i = 1, …, N. Although our nar-
rative will often consider individuals as the units of analysis, the same setting 
extends to other statistical units such as households, villages, schools, or 
municipalities. 
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3.2.1   �Causes as Manipulable Treatments 

In the population we study, some units are exposed to a cause, which is a treatment 
or intervention that manipulates factors that may affect a certain outcome. For 
instance, we might be interested in studying whether class size at primary school 
affects student performance. Class size here is the treatment and performance is the 
outcome, which is typically measured using standardized tests. In many countries, 
class size formation depends on grade enrollment so that, across cohorts, the num-
ber of students in the class may change because enrollment changes or because a 
specific policy affects the regulation. We will use the words “cause”, “treatment”, or 
“intervention” interchangeably. 

The avenue we take here has some limitations, as not all causes worth consider-
ing are manipulable in practice (consider, for example, gender, ethnicity, or genetic 
traits). Moreover, the design-based approach we describe below may be coarse at 
times and aimed at shedding light on one particular aspect of a more articulated 
model. For example, empirical evidence on the causal effects of class size on 
achievement bundles up the possible contribution of multiple channels that may 
lead to a better learning environment in small classes. The investigation of channels 
and mechanisms behind the uncovered effects calls for theories and structural mod-
els. The most relevant question to consider turns on the quality of the design-based 
strategy and on our faith to prop up a more elaborate theoretical framework. 

We focus only on binary treatments, that is, we assume that treatment status is 
described by a binary random variable Di taking value one if unit i is exposed to 
treatment (“treated” or “participant”) and zero otherwise (“untreated”, “non-partic-
ipant”, or “control”). In the class size example, this amounts to considering a setting 
in which students can be enrolled in small or large classes. The extension to the case 
of multi-valued or continuous treatment (for example, the number of classmates) is 
logically identical but requires a more cumbersome notation. More in general, the 
binary case is always worth of consideration even in a more general context as it 
helps understand the main challenges in the quest for detecting causal effects. A 
related issue concerns public policies that are designed as “bundles” of multiple 
components. In those cases, policy-makers are often interested in disentangling the 
effect of every component of the policy. We abstract from this problem in our dis-
cussion, but emphasize here that the ability to address this question will depend, in 
general, on the exposure of subjects to different components. 

We must take a stand on the reasons why different units end up having a value of 
Di equal to one or zero. This is the so-called “assignment rule” and is at the core of 
any evaluation study. Assignment to treatment can be totally random. In our class 
size example, this happens when students are randomized to a small or a large class 
with equal probability and independently of socio-economic background or past 
performance. When randomization is not at work, participation to treatment is most 
likely the result of choices made by the units themselves, administrators of the pro-
gram, or policy makers. For example, parents can choose to enroll their children in 
schools with smaller classes in the hope of a better learning environment. Finally, 
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participation to treatment may depend on admission rules that units must comply 
with. The case of class size formation based on total enrollment is a good example, 
as the chance of being enrolled in a small class depends on a school’s yearly total 
recruitment. As we shall see, our ability to assess causal effects grows with knowl-
edge of the assignment rule.  

3.2.2   �Effects as Differences Between Factual 
and Counterfactual Outcomes 

It is essential to set the stage for a transparent definition of the treatment effect. To 
do so, we define Yi(1) and Yi(0) as the potential outcomes experienced if unit i is 
treated (Di = 1) or untreated (Di = 0), respectively. The unit-level treatment effect of 
Di on Yi is the difference between Yi(1) and Yi(0): Δi = Yi(1) − Yi(0). Decades of 
empirical studies using micro-data analyses have taught us that treatment effects 
most likely vary across units or groups of units with very similar demographics. The 
notation employed here accommodates for this possibility (the manuals by Angrist 
& Pischke, 2008, and Imbens & Rubin, 2015, use the same approach). 

The definition of Δi unveils the fundamental problem that we face when we want 
to estimate this quantity from the data. While the two potential outcomes can be 
logically defined for each unit, they can never be observed simultaneously for the 
same unit. This is true regardless of the assignment rule and the richness or sample 
size of data we will ever work with. Specifically, the data can reveal only Yi(1) for 
units with Di = 1 and Yi(0) for units with Di = 0. We can, therefore, express the 
observed outcome Yi as follows: Yi = Yi(1)Di + Yi(0)(1 − Di) = Yi(0) + Di(Yi(1) − Yi(
0)). As simple as this can be, lack of observability of both potential outcomes 
implies lack of observability of the unit-level effect Δi. We can think of the unit-
level causal effect as the difference between an observed (factual) and an unob-
served (counterfactual) potential outcome. Factual quantities are those that can be 
computed from the data. Counterfactual quantities can be logically defined but can 
never be computed from data. For treated units, we observe Yi = Yi(1) and Yi(0) is the 
counterfactual. The opposite is true for control units, for whom we observe Yi = Yi(0) 
and Yi(1) is the counterfactual. 

One way to get around this limitation is to settle for less than unit-level effects. 
We might be interested in considering average treatment effects for the population 
or only for some sub-groups. For instance, we define the average treatment effect 
(ATE) as the average of the individual-level treatment effect in the whole popula-
tion: ATE = E(Yi(1) − Yi(0)). This parameter reflects our expectation of what would 
happen if we were to expose to treatment a randomly chosen unit from the popula-
tion. Alternatively, we can consider the average treatment effect for the treated 
(ATT), which describes our expectation for units who have been exposed to treat-
ment: ATT = E(Yi(1) − Yi(0)| Di = 1). Analogously, the average treatment effect for 
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the non-treated (ATNT) is informative about what would have happened to the 
untreated if they had been exposed to the intervention:

	
ATNT E Y Y Di i i� � � � � �� �1 0 0– | .

	  

Whether any of the above causal parameters can be retrieved from the data will 
have to be discussed on a case-by-case basis our understanding of the assignment 
rule plays a key role in this discussion.  

3.2.3   �What the Data Tell (And When) 

Our journey to learn about treatment effects begins by comparing features of the 
observed outcome Yi for treated and control units. For instance, the data reveal the 
average outcomes for treated units, E(Yi|Di  =  1), and control units, 
E(Yi|Di = 0). Recalling the definition of potential outcomes, the naïve comparison of 
average outcomes by treatment group, E(Yi|Di = 1) − E(Yi| Di = 0) = E(Yi(1)|Di = 1) 
− E(Yi(0)| Di = 0), conveys the correlation between the treatment, Di, and the out-
come, Yi. 

The causal interpretation of such naïve comparison is controversial in most 
cases. To see why, we can add and subtract from the right-hand side of the previous 
equation the quantity E(Yi(0)|Di = 1). This is a counterfactual quantity, as the out-
come Yi(0) cannot be observed for treated units, and represents what would have 
happened to treated units had they not participated to treatment. We can arrange the 
terms and write:

	

E Y D E Y D E Y Y D E Y D

E Y

i i i i i i i i i| | | |�� � �� � � � � � � �� � � � � �� �1 0 1 0 1 0 1– –

– ii iD0 0� � �� �| .
	
(3.1)

 

It follows that the naïve comparison on the left-hand side of Eq. 3.1 is equal to 
the sum of the ATT and the term E(Yi(0)| Di = 1) − E(Yi(0)| Di = 0), which is often 
called “selection bias”. It is worth noting that this representation does not hinge on 
any assumptions. It is the result of a simple algebraic trick and, as such, is always true. 

Selection bias is an error in the causal reasoning. It is different from zero when, 
in the absence of treatment, the group with Di = 1 would have performed differently 
from the group with Di = 0. The same concept is conveyed by the “correlation is not 
causation” motto: correlation (the naïve treatment–control comparison) has no 
causal interpretation (that is, it does not coincide with the ATT) unless the selection 
bias is zero. This reframes the quest for causal effects as a discussion on the exis-
tence of selection bias. A non-zero bias follows from having groups defined by 
Di = 1 and Di = 0 that are not representative of the same population, in the sense that 
participation to treatment depends on non-random selection. At the end of the day, 
selection bias reflects compositional differences between treatment and control 
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units. Taking up our class size example, parents with a strong preference for smaller 
classes are most likely selected in terms of socio-economic background and demo-
graphics. If this selection translates into a better learning potential of their children, 
forming classes as a reflection of parental preference must create dis-homogenous 
groups of students. In this case, detecting a correlation between class size and 
achievement might just reveal dis-homogeneity across classes rather than a true 
causal effect of class size. 

Importantly, for the time being, we are agnostic about whether this dis-
homogeneity concerns characteristics of units that are observed in the data at hand 
or not. In fact, any strategy that can adjust for compositional differences between 
treated and control units also corrects for this bias. One leading example to consider 
here is randomization. When classes are formed by a coin toss, composition is the 
same. Even when it is because of sampling variability, differences in composition 
must be as good as random. We will formalize this idea in Sect. 3.4, below. Instead, 
Chapters 4 and 5 in this volume present methods to alleviate imbalances along 
observable dimensions and discuss the identifying assumptions that permit to reach 
causal conclusions once these differences are eliminated.   

3.3   �Shades of Validity 

The assessment of a causal channel from treatment to the outcome depends on the 
properties of the research design. In short, this is the toolbox of empirical methods 
that allows one to distinguish between correlation and causality. Any strategy falling 
short on this minimum requirement is not a valid option to consider for a good 
researcher. On the other hand, a good research design must be able to detect pre-
cisely the causal relationship of interest. That is, you do not want your design to be 
underpowered for the size of the treatment effect. Finally, the ideal research design 
should be able to provide causal statements that apply to the largest share of units in 
the population and extend to other contexts and times. The concern here is one of 
generalizability, which is of fundamental importance for offering evidence-based 
policy recommendations. Causal talk makes use of these three ideas of validity in 
the development of a research design. This is what we will discuss briefly next. The 
seminal textbook by Cook and Campbell (1979) provides a deeper treatment of 
these topics. 

3.3.1   �Internal Validity: The Ability to Make a Causal Claim 
from a Pattern Documented in the Data 

Internal validity concerns the ability of assessing whether the correlation between 
treatment and outcome depicts a causal relationship or if it could have been observed 
even in the absence of the treatment. Therefore, internal validity is solely concerned 
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with the presence of selection bias. It is achieved under a ceteris paribus compari-
son of units, when all else but the treatment is kept constant between treated and 
control units. As we discussed above, this calls for the same composition of treat-
ment (small class) and control (large class) units. An internally valid conclusion is 
the one without selection bias. One of the main advantages of using randomization 
is that such ceteris paribus condition is met by design. Because of this, a properly 
conducted randomization yields internally valid causal estimates.  

3.3.2   �Statistical Validity: Measuring Precisely the Relationship 
Between Causes and Outcomes in the Data 

Statistical validity refers to the appropriate use of statistical tools to assess the extent 
of correlation between treatment and outcomes. It is fundamentally concerned with 
standard errors and accuracy in assessing a statistical relationship. The main ques-
tion addressed by statistical validity is whether the chosen data and techniques of 
statistical inference can produce precise estimates of very small treatment effects (a 
statistically precise zero) or if, instead, the research design will likely produce sta-
tistical zeros (a statistically insignificant effect). An insignificant effect that is statis-
tically different from zero is a powerful oxymoron to summarize the idea underlying 
statistical validity.  

3.3.3   �External Validity: The Ability to Extend Conclusions 
to a Larger Population, over Time and Across Contexts 

External validity is about the predictive value of a particular causal estimate for 
times, places, and units beyond those represented in the study that produced it. The 
concern posed by external validity is one of generalizability and out-of-sample pre-
diction. For example, an internally valid estimate for a given sub-group of the popu-
lation might not be informative about the treatment effect for other (potentially 
different and policy-relevant) sub-groups. Similarly, ATT is, in general, different 
from ATE. Replicability of the same results in other contexts and times is of funda-
mental interest for providing policy recommendations.   

3.4 � Random Assignment Strengthens Internal Validity 

As Andrew Leigh puts it in his book “Randomistas: How Radical Researchers Are 
Changing the World,” (Leigh, 2018) randomized controlled trials (RCTs) use “the 
power of chance” to assign the groups. Randomization can be achieved by flipping 
a coin, drawing the shorter straw, or using a computer to randomly assign statistical 
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units to groups. In any of these cases, the result would be the same: the treatment 
and the control group are random samples from the same population. 

Random assignment ensures that treatment and control units are the same in 
every respect, including their expected Yi(0). It follows that, in RCTs, selection bias 
must be zero since E(Yi(0)| Di  =  1) = E(Yi(0)| Di  =  0). In other words, what we 
observe for control units approximates what would have happened to treated units 
in the absence of treatment. It is worth noting that random assignment does not 
work by eliminating individual differences, but it rather ensures that the composi-
tion of units being compared is the same. 

RCTs ensure a ceteris paribus (i.e., without confounds) comparison of treatment 
and control groups. Because of this, an RCT provides an internally valid research 
design for assessing causality. Evidence in support of this validity can be obtained 
using pre-intervention measurements. In fact, it is a good practice to collect this 
information and test the validity of the design by carrying out a battery of “balanc-
ing” tests. In a properly implemented randomization, there are no selective differ-
ences in the distribution of pre-intervention measurements between treated and 
control units. This statement does not rule out the possibility of between-group 
differences arising from sampling variability, which is a problem concerning the 
statistical validity (that is, the precision of point estimates) of RCTs. 

Finally, under random assignment, the naïve comparison will provide internally 
valid conclusions about the average treatment effect on the treated (ATT), as we 
have that E(Yi|Di = 1) − E(Yi| Di = 0) = E(Yi(1) − Yi(0)|Di = 1). In addition, under 
randomization, the groups with Di = 1 and Di = 0 are representative of the same 
population so that E(Yi(1) − Yi(0)|Di = 1) = E(Yi(1) − Yi(0)). This means that the 
causal conclusions hold for any unit randomly selected from the population. 

Random assignment to treatment is not uncommon in numerous fields of the 
social sciences. One such example is the lottery-based allocation of pupils to schools 
that are oversubscribed. This alternative to the traditional priority criterion based on 
proximity should dampen school stratification caused by wealthy parents buying 
houses in the close vicinity of high-quality schools. As a result, among the pool of 
applicants to a school where oversubscription is resolved by a lottery, getting a seat 
or not is completely random. Some researchers (see Cullen et  al., 2006, for an 
example) have exploited this to evaluate the educational effects of attending one’s 
preferred school. 

Another example is the Oregon Health Insurance Experiment (see Finkelstein 
et al., 2012). Medicaid is one of the landmark US public health insurance programs 
and provides care for millions of low-income families. In 2008, the state of Oregon 
extended coverage of Medicaid by selecting eligible individuals with a lottery. This 
gave researchers the unique opportunity to provide credible causal estimates of the 
effect of health insurance eligibility on health care utilization, medical expenditure, 
medical debt, health status, earnings, and employment. 

Although RCTs are considered as the “gold standard” for providing internally 
valid estimates of causal effects, they are not without shortcomings (see the excel-
lent surveys by Duflo et al., 2008 and Peters et al., 2018). External validity is often 
perceived as the main limitation and more so for small-scale experiments on very 
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specific subpopulations. Bates and Glennerster (2017) propose a framework to dis-
cuss generalizability based on four steps: identify the theory behind the program; 
check if local conditions hold for that theory to apply; evaluate the strength of the 
evidence for the required general behavioral change; evaluate whether the imple-
mentation process can be carried out well. External validity is granted if these four 
conditions apply in a context different from the one where the experiment was con-
ducted. Statistical validity as well may challenge the significance of many small-
scale experiments (see Young, 2019). 

RCTs have other limitations. Many RCTs are carried out as small-scale pilots 
that shall be eventually scaled up to the entire population. Causal reasoning in this 
context must consider the general equilibrium effects arising from this change in 
scope. These effects are concerned with the possible externalities for non-participants 
when the policy is implemented on a larger scale and the implications for market 
equilibria. An additional concern about RCTs is that the sole fact of being “under 
evaluation” may generate some behavioral response that has nothing to do with a 
treatment effect.1 Replicability of experiments also has been called into question in 
many fields of the social sciences (see Open Science Collaboration, 2015, for psy-
chology and Camerer et al., 2016, for economics). 

What happens when randomization is not a feasible option? This is the question 
to which we turn next.  

3.5 � Internally Valid Reasoning Without RCTs: 
Instrumental Variation

3.5.1    �A Tale of Pervasive Manipulation 

Randomizations obtained by design are not the only way to ensure ceteris paribus 
comparisons. Randomness in the assignment to treatment may arise indirectly from 
natural factors or events independently of the causal channel of interest. Under 
assumptions that we shall discuss, these factors can be used instrumentally to pin 
down a meaningful casual parameter. The most important takeaway message here is 
that we must use assumptions to make up for the lack of randomization. Because of 
this, much of the simplicity of the research design is lost, and internal validity must 
be addressed on a case-by-case basis. We will present an example of the toolbox for 
good empirical investigations using administrative data on student achievement 
and, further below, class size. 

Our working example makes use of standardized tests from INVALSI (a govern-
ment agency charged with educational assessment) for second and fifth graders in 
Italian schools for the years 2009–2011. Italy is an interesting case study as it is 

1 Such quirky responses are called “Hawthorne” effects for treated subjects and “John Henry” 
effects for controls.
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characterized by a sharp North–South divide along many dimensions, among which 
school quality. This divide motivates public interventions to improve school inputs 
in the South. As testing regimes have proliferated in the country, so has the tempta-
tion to cut corners or cheat at the national exam.2 As shown in Fig. 3.1, the South is 
distinguished by widespread manipulation on standardized tests. INVALSI tests are 
usually proctored and graded by teachers from the same school, and past work by 
Angrist et al. (2017) has shown that manipulation takes place during the grading 
process. Classes with manipulated scores are those where teachers did not grade 
exams honestly. 

Consider the causal effect of manipulation on test scores. As scores are inflated, 
the sign of this effect is obvious. However, the size of the causal effect (that is, by 

2 Cheating or manipulation is not unique to Italy, as discussed in Battistin (2016).
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how much scores are inflated) is difficult to measure because manipulation is not the 
result of random factors. The incentive to manipulate likely decreases as true scores 
increase so that the distribution of students’ true scores is not the same across classes 
with teachers grading honestly or dishonestly. Again, this is a problem about the 
composition of the two groups, as treatment classes (with manipulated scores) and 
control classes (with honest scores) need not be representative of the same 
population. 

When empirical work is carried out using observational data, as it is the case 
here, it is always illuminating to start from the thought experiment. This is the hypo-
thetical experiment that would be used to measure the causal effect of interest if we 
had the possibility to randomize units. With observational data, the identification 
strategy consists of the assumptions that we must make to replicate the experimental 
ideal. The thought experiment in the case of INVALSI data corresponds to distribut-
ing manipulation (the treatment) across classes at random. The identification strat-
egy here amounts to the set of assumptions needed to mimic the very same 
experimental ideal even if manipulation is not random. How can this be possible? 

Econometrics combined with the institutional context come to the rescue. It turns 
out that about 20% of primary schools in Italy are randomly assigned to external 
monitors, who supervise test administration and the grading of exams from local 
teachers in selected classes within the school (see Bertoni et al., 2013, and Angrist 
et al., 2017, for details on the institutional context). Table 3.1 shows that monitors 
are indeed assigned to schools using a lottery. Schools with monitors are statisti-
cally indistinguishable from the others along several dimensions, including average 
class size and grade enrollment. For example, the table shows that the average class 
size in unmonitored classes of the country is 19.812 students. The difference 
between treated and control classes is as small as 0.035 students and statistically 
indistinguishable from zero. Additional evidence on the lack of imbalance between 
schools with and without monitors is in Angrist et al. (2017). In the next section, we 
discuss how to use the monitoring randomization to learn about the effects of 
manipulation on scores.  

3.5.2   �General Formulation of the Problem 

In our example, the class is the statistical unit of analysis and the treatment is 
manipulation (Di = 1 if class scores are manipulated and Di = 0 if they are honestly 
reported). INVALSI has developed a procedure to reveal Di, so treatment status is 
observed in the data. Scores (standardized by grade, year, and subject) are the class-
level outcome,Yi. The presence of external monitors is described by a binary random 
variable Zi, with Zi = 1 for classes in schools with monitors and Zi = 0 otherwise. In 
the applied econometrics parlance, variables like Zi—which is randomly assigned 
and can influence treatment status—are called “instruments.” 

The ordinary least squares (OLS) regression of Yi on Di summarizes the correla-
tion between manipulation and reported scores. Estimation results obtained from 
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Table 3.1  Covariate balance in the monitoring experiment (Angrist et al., 2017)

Italy North/Center South
Control 
mean

Treatment 
difference

Control 
mean

Treatment 
difference

Control 
mean

Treatment 
difference

(1) (2) (3) (4) (5) (6)

Class size 19.812 0.0348 20.031 0.0179 19.456 0.0623
[3.574] (0.0303) [3.511] (0.0374) [3.646] (0.0515)

Grade 
enrollment at 
school

53.119 −0.4011 49.804 −0.5477 58.483 −0.1410
[30.663] (0.3289) [27.562] (0.3913) [34.437] (0.5909)

% in class 
sitting the test

0.939 0.0001 0.934 0.0006 0.947 −0.0007
[0.065] (0.0005) [0.066] (0.0006) [0.062] (0.0008)

% in school 
sitting the test

0.938 −0.0001 0.933 0.0005 0.946 −0.0010
[0.054] (0.0005) [0.055] (0.0006) [0.051] (0.0008)

% in institution 
sitting the test

0.937 −0.0001 0.932 0.0005 0.945 −0.0010
[0.045] (0.0004) [0.043] (0.0005) [0.045] (0.0007)

N 140,010 87,498 52,512

Columns 1, 3, and 5 show means and standard deviations for variables listed at the left. Other 
columns report coefficients from regressions of each variable on a treatment dummy (indicating 
classroom monitoring), grade and year dummies, and sampling strata controls (grade enrollment at 
institution, region dummies, and their interactions). Standard deviations for the control group are 
in square brackets; robust standard errors are in parentheses
ap<0.01, bp<0.05, cp<0.1

OLS are reported in Table 3.2, and a positive correlation between cheating and test 
score is revealed in all columns. For instance, the value of the coefficient reported 
in Column (1) of Panel A implies that when we consider data for the whole of Italy, 
the average math score in classes with manipulated scores is 1.414 standard devia-
tions higher than in classes where teachers did not manipulate scores.3 However, as 
discussed above, this result cannot be given any causal interpretation, as the samples 
with Di = 0 and Di = 1 are non-randomly selected. 

Unlike Di, the status Zi is randomly assigned. So, it is can be instructive to consider 
the regression of Yi on Zi, summarizing the correlation between manipulation and mon-
itoring. As Zi is randomly assigned, the latter regression yields the causal effect of 
monitoring on scores (orthodox empiricists often call this regression the “reduced form 
equation”). Results in Columns (1)–(3) of Table 3.3 show a negative effect of monitor-
ing on test scores in all columns (see Bertoni et al., 2013). For example, from Column 
(1) of Panel A, we learn that the average math score in schools with external monitors 
is 0.112 standard deviations lower than in schools without monitors. Arguably, the 
negative effect of monitoring on scores passes through a reduction of manipulation. 

We need to enrich our causal inference vocabulary to consider potential out-
comes based on the 2x2 scenarios that result from the cross-tabulation of Di and 
Zi: Yi(Di, Zi). Similarly, we need to adjust the notation to express the idea that Zi 

3 Here and in what follows, INVALSI scores are standardized to have zero mean and unit variance 
by subject and year.
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Table 3.2  Correlation between score manipulation and test scored

Test scores
Italy North/Center South

(1) (2) (3)
A. Math

Score manipulation 1.414a 1.404a 1.413a

(0.006) (0.009) (0.007)
Means 0.007 −0.074 0.141
(sd) (0.637) (0.502) (0.796)
N 139,996 87,491 52,505

B. Language
Score manipulation 1.179a 1.085a 1.213a

(0.005) (0.007) (0.006)
Means 0.01 −0.005 0.035
(sd) (0.523) (0.428) (0.649)
N 140,003 87,493 52,510

All models control for a quadratic polynomial in grade enrollment, segment dummies, and their 
interactions. The unit of observation is the class. Robust standard errors, clustered on school and 
grade, are shown in parentheses. Control variables include % female students, % immigrants, % 
fathers at least high school graduate, % employed mothers, % unemployed mothers, % mother 
NILF, grade and year dummies, and the proportions of  missing values in these variables. All 
regressions additionally include sampling strata controls (grade enrollment at institution, region 
dummies, and their interactions). ap<0.01, bp<0.05, cp<0.1

Table 3.3  Monitoring effects on test scores and score manipulation (Angrist et al., 2017)

Test scores Score manipulation
Italy North/Center South Italy North/Center South

(1) (2) (3) (4) (5) (6)
A. Math

Monitor at institution (Migkt) −0.112a −0.075a −0.180a −0.029a −0.010a −0.062a

(0.006) (0.005) (0.012) (0.002) (0.001) (0.004)
Means 0.007 −0.074 0.141 0.064 0.02 0.139
(sd) (0.637) (0.502) (0.796) (0.246) (0.139) (0.346)
N 140,010 87,498 52,512 139,996 87,491 52,505

B. Language
Monitor at institution (Migkt) −0.081a −0.054a −0.131a −0.025a −0.012a −0.047a

(0.004) (0.004) (0.009) (0.002) (0.001) (0.004)
Means 0.01 −0.005 0.035 0.055 0.023 0.11
(sd) (0.523) (0.428) (0.649) (0.229) (0.149) (0.313)
N 140,010 87,498 52,512 140,003 87,493 52,510

Columns 1–3 report the reduced form effects of having a monitor at the institution on test scores. 
Columns 4–6 show the first-stage estimates of the effect of having a monitor at the institution on 
score manipulation. All models control for a quadratic polynomial in grade enrollment, segment 
dummies, and their interactions. The unit of observation is the class. Robust standard errors, clus-
tered on school and grade, are shown in parentheses. Control variables include % female students, 
% immigrants, % fathers at least high school graduate, % employed mothers, % unemployed moth-
ers, % mother NILF, grade and year dummies, and proportions of missing values in these variables. 
All regressions  additionally include sampling strata controls (grade enrollment at institution, 
region dummies, and their interactions). ap<0.01, bp<0.05, cp<0.1
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affects Di. We define potential treatments Di(0) and Di(1) as the treatment status that 
individual i has when exposed to Zi = 0 and Zi = 1, respectively. In our running 
example, the realized score Yi corresponds to the potential score realized for the 
observed combination {Di = d, Zi = z}, while the realized manipulation Di coincides 
with the potential manipulation realized for the observed value of Zi = z. For exam-
ple, Yi(1, 1) represents the score that would be recorded for class i if teacher grading 
was dishonest (Di = 1) and the school had an INVALSI monitor (Zi = 1). Recall that, 
since only selected classes within the school are monitored, dishonest behavior 
from teachers in unmonitored classes within the school is always possible (see 
Bertoni et al., 2013). 

Depending on the values taken by Di(0) and Di(1), we can divide classes into four 
groups depending on the behavior of teachers grading the exams (see Battistin et al., 
2017, for a similar approach):

•	 Complying dishonest teachers (C), who grade dishonestly without monitors and 
grade honestly with monitors: Di(0)=1 and Di(1) = 0.

•	 Always dishonest teachers (A), who always grade dishonestly regardless of the 
presence of monitors: Di(0)=1 and Di(1) = 1.

•	 Never dishonest teachers (N), who always grade honestly regardless of the pres-
ence of monitors: Di(0)=0 and Di(1) = 0.

•	 Non-complying dishonest teachers (D), who grade honestly without monitors 
and grade dishonestly with monitors: Di(0)=0 and Di(1) = 1.

This classification does not hinge on any assumptions and represents the taxonomy 
of all possible behavioral responses from teachers arising from the monitoring sta-
tus of the school. The fact that both Di and Zi are binary limits to four the number of 
such responses.  

3.5.3   �Assumptions 

The identification strategy for the analysis of natural experiment builds on four 
assumptions. We now discuss each of them with reference to our specific running 
example on the effect of manipulation on test scores. We refer the reader to Angrist 
and Pischke (2008) for a more general discussion. 

3.5.3.1 � The “Monotonicity” Assumption 

We begin our investigation by assuming lack of non-complying dishonest teachers 
(D-teachers) in the data. This is a rather innocuous assumption in our context. A 
violation would represent a quirky behavioral response to the presence of monitors. 
This assumption is also known as monotonicity condition. It is a restriction on the 
behavior of units stating that when we move the instrument Zi from z′ to z′′, all agents 
respond by changing their Di in the same direction or by leaving it unaltered. In our 
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case, this assumption implies that (a) honest teachers without monitors at school 
would be honest teachers even with a monitor and (b) dishonest teachers without 
monitors at school might grade honestly under the threat of a monitor at school. In 
the former case, the value of Di is unchanged by monitoring and remains zero; in the 
latter case, the value of Di may remain one or turn to zero with monitoring. The 
events (a) and (b) imply that the distribution of the variable Di must move toward 
zero in the presence of school monitoring. Ruling out the presence of D-teachers 
implies that monitors cannot change the variable Di in the opposite direction, from 
zero to one. This exemplifies why the variable Zi must induce a monotone (towards 
zero) behavior for all teachers. 

Monotonicity plays a crucial role in natural experiments: under this assump-
tion, we are left with three compliance types—C, A, and N—whose shares in the 
populations can be represented by πC, πA, πN, respectively. Manipulators are a 
mixture of always dishonest teachers (A-teachers) and complying dishonest teach-
ers (C-teachers) without monitors. Honest teachers are composed of never dishon-
est teachers (N-teachers) and complying dishonest teachers (C-teachers) with 
monitors.  

3.5.3.2 � The “As Good as Random” Assumption 

A second key relationship among the variables involved arises because schools are 
randomly assigned to either Zi = 1 or Zi = 0. Because of the monitoring experiment, 
the two groups of schools must have the same composition with respect to any vari-
able, including potential outcomes and potential treatment statuses. It, therefore, 
follows that {Yi(1, 1), Yi(0, 1), Yi(1, 0), Yi(0, 0), Di(0), Di(1)} ⊥ Zi. In our case, this 
“as good as random” assumption holds by design, because monitors have been 
explicitly assigned at random to schools.  

3.5.3.3 � The “Exclusion Restriction” 

The causal reasoning builds upon an exclusion restriction. This formalizes the 
causal construct that the effect of Zi on Yi shall be solely because of the effect of Zi 
on Di. In the example considered here, this restriction can be put across considering 
the following equations:
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Therefore, the exclusion restriction implies that there are only two potential out-
comes, indexed against Di: Yi(Di). For example, the first equation implies that scores 
under honest grading (Di = 0) would be the same irrespective of the presence of 
monitors. Similarly, the second equation implies that dishonest grading (Di  = 1) 
would yield the same score independently of school monitoring. The latter 
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condition would be violated if, for example, always dishonest teachers cheated dif-
ferently in the presence of external monitors at school. This possibility is discussed 
in Battistin et al. (2017) and is ruled out in the case of INVALSI data by results in 
Angrist et al. (2017).  

3.5.3.4   �The “First-Stage” Requirement 

The assumed causal link from Di to Zi can be verified in the data by running an OLS 
regression of Di on Zi. In fact, it is a good practice to verify the size and statistical 
strength of this “first-stage” regression in any study based on quasi-experimental 
variation, as the causal chain we have in mind originates from the effect of Zi on Di. 
Should we observe any effect of Zi on Yi but no effect of Zi on Di, it would be hard 
to justify that the random variation in Zi affected Yi via the ability of Zi to move Di. 
Estimates of the “first-stage” relationship between exposure to monitors and manip-
ulation are reported in Columns (4)–(6) of Table 3.3. As expected, score manipula-
tion is less likely in schools where monitors are present. For example, Column (4) 
of Panel A indicates that the probability of score manipulation is 2.9 percentage 
points lower in schools of the country with monitors. This is equivalent to a 36% 
decrease in the probability of manipulation with respect to the mean in non-
monitored schools (equal to 6.4%). As demonstrated by the estimates in Columns 
(5) and (6) of Table 3.3, this decrease is stronger in Southern Italy than in the North 
and Center of the country and strongly statistically significant.   

3.5.4   �Better LATE than Never 

To nail down the causal effect of manipulation on scores, we proceed by comparing 
the expected value of the product YiDi for schools with and without monitors. This 
product is equal to Yi for units with Di = 1 and to 0 for units with Di = 0. Given all 
the assumptions made so far, we have that:

	
E Y D Z E Y Ai i i A i| |�� � � � � �� �1 1� ,

	

	
E Y D Z E Y C E Y Ai i i c i A i| | |�� � � � � �� � � � � �� �0 1 1� � .

	

In the first equation, neither C-teachers or N-teachers show up, because for them 
Di = 0 when Zi = 1 so that YiDi = 0.4 Because of the monotonicity assumptions, there 

4 A consequence of random assignment of Zi and of the exclusion restriction is that conditional on 
the compliance types defined above, potential outcomes are independent of Zi, that is, {Yi(1), 
Yi(0)} ⊥ Zi ∣ {Di(0), Di(1)}. In fact, conditional on a given compliance type, there is a one-to-one 
mapping between Zi and Di,, and therefore, knowledge of Zi implies knowledge of Di.
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are no D-type teachers either. Therefore, the only group left is that of A-teachers, 
whose fraction in the population is πA and for whom we always observe Yi(1). In a 
similar fashion, we do not see N-teachers in the second line, as for them, Di = 0 
when Zi = 0. Consequently, after ruling out the presence of D-teachers by monoto-
nicity, only C- and A-teachers show up in this equation. C-teachers account for a 
fraction πC of the population, and for them, we observe Yi(1) as in this case Zi = 0, 
and therefore, Di = 1. 

For these very same reasons, if we compare the share of manipulators in schools 
with and without external monitors, we obtain:

	
E D Zi i A| �� � �1 � ,

	

	
E D Zi i c A| �� � � �0 � � .

	

The former expression suggests that only A-teachers have Di = 1 when Zi = 1; the 
latter that are both C- and A-teachers have Di = 1 when Zi = 0. Analogous expres-
sions can be derived for E(Yi(0)| C), E(Yi(0)| N) and for πN if one substitutes Di with 
(1 − Di) in the above. We have that:

	
E Y D Z E Y C E Y Ni i i C i N i1 1 0 0–� � �� � � � � �� � � � � �� �| | |� � ,

	

	
E Y D Z E Y Ni i i N i1 0 0–� � �� � � � � �� �| |� ,

	

	
E D Zi i C N1 1–� � �� � � �| � � ,

	

	
E D Zi i N1 0–� � �� � �| � .

	

In the first and third equation, A-teachers do not show up because they always 
have Di = 1 so that Yi(1 − Di) = 0 and (1 − Di) = 0.5 Because of the monotonicity 
assumptions, there are no D-type teachers either. Therefore, only C- and 
N-teachers are left. C-teachers account for a fraction πC of the population. Since 
in this case Zi = 1, for them, we observe Di = 0 and, therefore, Yi(0). N-teachers 
are a share πN of the population, as for them, Di is always equal to 0, and we 
observe Yi(0). 

Similarly, in the second and fourth line, we do not see A- and C-teachers, as for 
them Di = 1 when Zi = 0. Consequently, after ruling out the presence of D-teachers 
by monotonicity, only N-teachers are left. 

5 A consequence of random assignment of Zi and of the exclusion restriction is that conditional on 
the compliance types defined above, potential outcomes are independent of Zi, that is, {Yi(1), 
Yi(0)} ⊥ Zi ∣ {Di(0), Di(1)}. In fact, conditional on a given compliance type, there is a one-to-one 
mapping between Zi and Di,, and therefore, knowledge of Zi implies knowledge of Di.
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By rearranging the equations above, it is easy to obtain:
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E Y D Z E Y D Z

E D Z E D Zi
i i i i i i

i i i i

1
1 0

1 0
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�� � �� �
|

| |

| |

–

–
,

	 (3.2) 

and
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i i
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1 1
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The difference between the last two expressions yields:
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E Y Z E Y Z
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i i i i
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1 0
1 0
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� � � �� � � �� � �� �
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	 (3.4)

which represents the average causal effect of manipulation for classes with teachers 
who graded honestly because of school monitoring (that is, classes with C-teachers). 
Intuitively, this happens because—in the absence of D-teachers—this is the only 
group of teachers for whom the presence/absence of monitors generates variation in 
manipulation. Borrowing the definition by Angrist and Imbens (1994), the parame-
ter on the left-hand side of (3.4) is the local average treatment effect (LATE). The 
word “local” here is motivated by causal conclusions only licensed for a subset of 
classes in the population. 

Importantly, the expression on the right-hand side of Eq. 3.4 involves only the 
variables observed so that the causal parameter can be identified from the data. 
Standard econometric results imply that LATE is estimated by the coefficient on Di 
in a two-stage least squares (TSLS) regression of Yi on Di, using Zi to instrument for 
Di.6 Table 3.4 reports the estimates of the LATE parameter in our running example 
and reveals that manipulation causally increased scores of students assigned to com-
plying dishonest teachers. For example, Column (1) of Panel (A) tells us that score 
manipulation increases math results in classes with C-teachers by 3.827 standard 
deviations. This causal effect is much larger than the naïve comparison of scores by 
treatment status reported in Column (1) of Panel A in Table 3.2. Why is it the case? 
As illustrated in Sect. 3.2.3, the naïve comparison is equal to a causal effect plus 
selection bias. In this case, selection bias corresponds with the difference in average 
score of manipulators and non-manipulators if manipulation was not possible at all. 
As we have argued, manipulation is less likely to occur in classes with higher aver-
age true scores. So, selection bias is likely to be negative, that is, E(Yi(0)| 
Di = 1) < E(Yi(0)| Di = 0).  

6 A similar result applies to the expressions in (3.2) and (3.3) when TSLS regressions of YiDi on Di 
and of Yi(1 − Di) on (1 − Di), respectively, are considered.
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Table 3.4  Local average treatment effect of score manipulation on test scores

Test scores
Italy North/Center South

(1) (2) (3)
A. Math

Score manipulation (Digkt) 3.827a 7.393a 2.886a

(0.188) (0.804) (0.158)
Means 0.007 −0.074 0.141
(sd) (0.637) (0.502) (0.796)
N 139,996 87,491 52,505

B. Language
Score manipulation (Digkt) 3.279a 4.523a 2.786a

(0.180) (0.456) (0.178)
Means 0.01 −0.005 0.035
(sd) (0.523) (0.428) (0.649)
N 140,003 87,493 52,510

All models control for a quadratic in grade enrollment, segment dummies, and their interactions. 
The unit of observation is the class. Robust standard errors, clustered on school and grade, are 
shown in parentheses. Control variables include % female students, % immigrants, % fathers at 
least high school graduate, % employed mothers, % unemployed mothers, % mother NILF, grade 
and year dummies, and proportions of missing values in these variables. All regressions include 
sampling strata controls (grade enrollment at institution, region dummies, and their interactions). 
ap<0.01, bp<0.05, cp<0.1

3.5.5   �External Validity of Causal Conclusions 

Causal conclusions can be drawn for classes with exams graded by C-teachers, and 
TSLS yield internally valid estimates of E(Yi(1) − Yi(0)| C). However, we have that 
E(Yi(1) − Yi(0)| C) ≠ E(Yi(1) − Yi(0)) in general. It follows that that the ability to 
extend causal conclusions to all classes—that is, the external validity of 
E(Yi(1) − Yi(0)| C)—is precluded in general. Using the expressions derived in the 
previous section, we can write:

	
�C i i i iE D Z E D Z� �� � �� �| |0 1– ,

	 (3.5)

so that the data is informative about the size of the population for whom this design 
can provide evidence about a causal effect. This is already a starting point to under-
stand the extent of the external validity problem of causal estimates obtained by 
LATE. In the case of INVALSI data, the value of πC is equal to 2.9% for math and 
2.5% for language. This can be seen from Column (4) of Table 3.3, which reports 
the coefficient of Zi in the first-stage regression of Dion Zi using data for all classes 
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in the country. This is equal to the opposite of πC.7 In the South, the share of 
C-teachers grows to 6.2% for math and 4.7% for language, as can be seen from 
Column (6) of the same table. 

In our example, the size of the compliant subpopulation is relatively small. 
How could one extend the conclusions drawn for a possibly small share of com-
plying dishonest teachers to the remaining classes in the population? We follow 
Angrist (2004) and note that the data provide information about E(Yi(1)| A) and 
E(Yi(0)| N) as well. These quantities can be obtained using expressions like 
those we derived above (see Battistin et al., 2017, for details). For example, we 
have that:

	
E Y A E Y D Zi i i i1 1 1� �� � � � �� �| | , ,

	

	
E Y N E Y D Zi i i i0 0 0� �� � � � �� �| | , .

	  

The first equality holds because—in the absence of D-teachers—only A-teachers 
manipulate scores in the presence of monitors. Similarly, only N-teachers report 
honestly without monitors. 

If potential outcomes were homogeneous across types in the population, then we 
would have that E(Yi(1)| A) = E(Yi(1)| C) and E(Yi(0)| N) = E(Yi(0)| C). If these two 
equalities cannot be rejected from the data, we would feel more confident about 
extending the results obtained for classes with complying dishonest teachers to 
other classes in the population.8 

In Table 3.5, we report the comparison of E(Yi(1)| C) vis-à-vis E(Yi(1)| A) and 
E(Yi(0)| C) vis-à-vis E(Yi(0)| N) for Southern Italy, where the problem of manipu-
lation is more pervasive. While the data does not reject that E(Yi(1)| C) is equal to 
E(Yi(1)| A), the empirical evidence suggests that E(Yi(0)| C) is much smaller than 
E(Yi(0)| N). For instance, as reported in Panel A of Table 3.5, for math, we have 
that E(Yi(1)| C) and E(Yi(1)| A) are very similar and, respectively, equal to 1.426 
and 1.236 standard deviations. On the other hand, while E(Yi(0)| C) is equal to 
−1.662 standard deviations, E(Yi(0)| N) is much higher and equal to −0.655 stan-
dard deviations. Therefore, in this case, the data advise against the generalization 
of the LATE of manipulation on scores outside of the population of complying 
dishonest teachers.   

7 The number reported in the table is the estimate of πC with its sign flipped. This is because the 
expression for share of C − teachers πC is in (5).The coefficient on Zi in the regression of Di on Zi 
identifies instead E(Di| Zi = 1) − E(Di| Zi = 0), that is, the opposite of πC.
8 Needless to say, full homogeneity of potential outcomes across types requires also that E(Yi(1)| 
N) = E(Yi(1)| C) and E(Yi(0)| A) = E(Yi(0)| C). However, the data will never reveal E(Yi(1)| N) and 
E(Yi(0)| A), as we never get to observe Di = 1 for N-teachers and Di = 0 for A-teachers. Hence, the 
latter two conditions cannot be tested empirically.
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Table 3.5  Average potential outcomes by type: South of Italy

Test scores
Complying dishonest (C) Always dishonest (A) Never dishonest (N)

(1) (2) (3)
A. Math

E(Yi(1)) 1.426a 1.236a

(0.020) (0.119)
E(Yi(0)) −1.453a −0.527a

(0.157) (0.104)
N 52,505 52,505 52,505

B. Language
E(Yi(1)) 1.147b 1.029a

(0.018) (0.103)
E(Yi(0)) -1.662a −0.655a

(0.176) (0.084)
N 52,510 52,510 52,510

E(Yi(1)| C) and E(Yi(0)| C) are obtained from 2SLS regressions as detailed in the text. E(Yi(1)| A) 
and E(Yi(0)| N) are computed from OLS regressions that estimate E(Yi| Di = 1, Zi = 1 ) and E(Yi| 
Di = 0, Zi = 0), respectively. All models control for a quadratic in grade enrollment, segment dum-
mies, and their interactions. The unit of observation is the class. Robust standard errors, clustered 
on school and grade, are shown in parentheses. Control variables include % female students, % 
immigrants, % fathers at least high school graduate, % employed mothers, % unemployed moth-
ers, % mother NILF, grade and year dummies, and proportions of missing values in these variables. 
All regressions include sampling strata controls (grade enrollment at institution, region dummies, 
and their interactions). ap<0.01, bp<0.05, cp<0.1

3.6 � Causal Reasoning with Administrative Rules: The Case 
of Regression Discontinuity Designs

3.6.1    �Larger Classes, Worse Outcomes? 

The benefits of reducing student–teacher ratios on learning, educational achieve-
ment, and eventually long-term labor market outcomes have been of long-standing 
concern to parents, teachers, and policy-makers. Observational studies often show a 
negative relationship between class size and student achievement. Yet the conclu-
sions of such studies might be subject to the problem of self-sorting of students into 
smaller classes. 

In many countries, class size formation depends on grade enrollment using a 
deterministic rule, and Italy is no exception. As discussed in Angrist et al. (2017), 
until 2008, class size in primary schools in Italy must be between 10 and 25. A 
reform in 2009 modified these limits to 15 and 27, respectively. Class formation is 
regulated by law, and grade enrollment above multiples of the cap to maximum size 
leads to the formation of a new class. To see this, consider the cap at 25 students in 
place until 2008. Schools enrolling up to 25 students must form one class. One 
additional student enrolled after 25 would force principals to form one additional 
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class, with an average class size of 13 students. The same idea extends to any mul-
tiple of 25 students. For example, crossing the 50-student limit is enough to form 
three classes instead of two and so forth. Because of the regulation in place, class 
size decreases sharply when enrollment moves from just below to just above mul-
tiples of 25. Angrist and Lavy (1999) called this relationship “Maimonides’ rule” 
after the medieval scholar and sage Moses Maimonides who commented on a simi-
lar rule in the Talmud.9 Exceptions to the rule in Italy are allowed in some cases. For 
example, a 10% deviation from the maximum (3 students) in either direction is 
possible at the discretion of school principals and upon the approval from the 
Ministry of Education. The presence of students with disabilities or special educa-
tion needs is often advocated to justify non-compliance with the law. Moreover, 
principals can form classes smaller than 10 students in the most remote areas of the 
country. 

By allowing actual class size to deviate from the class size mandated by law, 
these exceptions generate fuzziness in the relationship between actual and predicted 
class size. This can be seen in Fig. 3.2, where we report the average class size in the 
country by grade enrollment at school for second graders before 2008.10 The 
sawtooth-shaped solid line reports predicted class size as a function of enrollment, 
the Maimonides’ rule, while the dots report average actual class size by enrollment. 
The law predicts class size to be a non-linear and discontinuous function of enroll-
ment. Actual class size follows predicted class size closely and more so for schools 
enrolling less than 75 students (which is the majority of schools in the country). In 
addition, discontinuities in the actual class size/enrollment relationship show up at 
multiples of 25 enrolled students. Given the soft nature of the rule, however, they are 
weaker than the sharp ones observed for predicted class size.  

3.6.2   �Visual Interpretation 

Figure 3.3 offers a visual representation of the size of these discontinuities and is 
constructed using classes at schools with enrollment that falls in a [−12,12] window 
around the first four cutoffs shown in Fig. 3.2. Enrollment values in each window 
are centered to be zero at the relevant cutoff. The y-axis shows average class size 
conditional on the centered enrollment value shown on the x-axis. The figure also 
plots fitted values generated by locally linear regression (LLR) fits to class-level 

9 More precisely, let figkt be the predicted class size of class i in grade g at school k in year t. We have 

that f
r

int r c
igkt

gkt

gkt gt

�
� �� � ��

�
�
�–1 1/

, where rgkt is beginning-of-the-year grade enrollment at school 

k, cgtis the relevant cap (25 or 27) for grade g, and int(x) is the largest integer smaller than or 
equal to x.
10 Similar patterns hold also for the period after the 2008 reform and for fifth graders, as shown by 
Angrist et al. (2017).
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Fig. 3.2  Class size by enrollment among second-grade students in pre-reform years (Angrist 
et al., 2017). (It shows actual class size and class size as predicted by the Maimonides’ rule in pre-
reform years for second-grade students)

data, as described in Angrist et al. (2017). This representation is convenient in that 
one can think that small classes are those in schools with grade enrollment to the 
right of zero. The figure shows a clear drop at this value. Class size is minimized at 
about 3–4 students to the right of this value, as we would expect were Maimonides’ 
rule to be tightly enforced. 

How can we use these discontinuities in class size to assess a causal effects of 
class size? School enrollment may be positively correlated with test scores, for 
example, because larger schools are typically in urban areas, and this relationship 
need not be linear. However, we would be tempted to infer a causal effect of class 
size on test score if we observed a discontinuous change in test scores at the exact 
values of enrollment that are multiples of the maximum class size caps, where class 
size also discontinuously changes. This is the idea underlying the evaluation design 
that goes by the name of regression discontinuity (RD). 

Figure 3.4 exemplifies this idea. It reports the change in average test scores as 
normalized enrollment moves from below to above the recentered enrollment cut-
offs, separately for North and Central Italy and for the South. There is evidence of a 
positive discontinuity in scores as we move from below to above the cutoff in 
Southern Italy. Evidence of jumps for the rest of the country is instead much more 
limited, suggesting the possibility of causal effects of class size on learning mostly 
for schools in the South. 
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Fig. 3.3  Class size by enrollment among second-grade students, centered at the RD cutoffs 
(Angrist et al., 2017). (Graphs plot residuals from a regression of class size on the following con-
trols: % female students, % immigrants, % fathers at least high school graduate, % employed 
mothers, % unemployed mothers, % mother NILF, grade and year dummies, and dummies for 
missing values in these variables. All regressions include sampling strata controls (grade enroll-
ment at institution, region dummies, and their interactions). The solid line shows a one-sided 
LLR fit.)

The idea underlying the RD design is that the comparison of scores of classes 
just above and just below the enrollment cutoffs identified by the Maimonides’ 
rule is informative of effects of class size. Still, not all classes above the cutoffs 
are small and not all classes below are large, because of discretion in the applica-
tion of the rule. Intuitively, if compliance with the rule was perfect, then the 
graphical analysis would already reveal the causal effect. If compliance is not 
perfect, we may want to use the rule as an instrument for class size formation. 
Intuitively, the crucial assumption here is that the Maimonides’ rule must affect 
performance at school only because it affects class size formation. A juxtaposition 
with the identification results discussed in Sect. 3.5 reveals that, in this case, the 
causal effect of class size on learning is identified only for schools that would 
form smaller classes because of compliance with the rule. We will come back to 
this point later in this section.  

E. Battistin and M. Bertoni



61

Fig. 3.4  Test scores by enrollment among second-grade students, centered at the RD cutoffs 
(Angrist et  al., 2017), (Graphs plot residuals from a regression of test scores on the following 
controls: % female students, % immigrants, % fathers at least high school graduate, % employed 
mothers, % unemployed mothers, % mother NILF, grade and year dummies, and proportions of 
missing values in these variables. All regressions  additionally include sampling strata controls 
(grade enrollment at institution, region dummies, and their interactions). The solid line shows a 
one-sided LLR fit.)

3.6.3   �General Formulation of the Problem 

Following our running example, the class is the statistical unit of analysis and the 
treatment is class size.11 To ease the narrative, we distinguish between small and 
large classes and move to the background the possibility of a “continuous” treat-
ment (number of students in class). Small classes will have Di = 1 and large classes 
Di = 0. In our narrative, the Maimonides’ rule predicts small classes to the right of 
the recentered cutoffs in Fig.  3.2. Similarly, a large class is predicted for grade 
enrollment at or below the cutoffs in the same figure. Potential outcomes Yi(1) and 
Yi(0) are the average test score that class i would get if it was small or large. Grade 
enrollment at school of class i is ri. Without loss of generality and consistent with 
Fig. 3.3, we recentered grade enrollment at zero using a [−12,12] window around 
cutoffs. 

3.6.3.1 � The Sharp RD Design 

We start our discussion by assuming full compliance of school principals with the 
Maimonides’ rule. In other words, we pretend that all classes with ri at or above zero 
are small and that all classes with ri below zero are large. This is equivalent to 

11 We will drop all indexes other than i in what follows. The data contains additional dimensions, 
but we ignore them for expositional simplicity. One dimension is grade and year. However, scores 
are standardized by grade and year, so we can ignore them. As a result of this normalization, we 
end up having repeated measurements over time for classes at the same school. Another dimension 
is the reform regime. We recenter enrollment to the right cutoff depending on the regulation in 
place, and we, therefor, abstract from this dimension.
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assuming a deterministic relationship between ri and class size, which we express 
using the following notation: Di = 1(ri ≥ 0). We use this sharp setting to write the 
comparison of outcomes for classes in schools with grade enrollment in a neighbor-
hood of the Maimonides’ cutoff. The notion of cutoff proximity will be exemplified 
by using limits from below and above zero. Accordingly, the notation ri

� � 0  in 

what follows should read “just above the Maimonides’ cutoff”; the notation ri
– = 0  

is instead “just below the Maimonides’ cutoff.” 
We have that:
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because in classes to the left of the Maimonides’ cutoff Di is zero so that the second 
term vanishes. For classes with ri above zero, we have:
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because Di is one deterministically. It follows that the outcome difference between 
small and large classes at the cutoff can be written as:
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The parallel with the naïve comparison discussed in Eq. 3.1 is striking: the com-
parison of outcomes for small ( ri

� � 0 ) and large ( ri
– = 0 ) classes is equal to a 

causal effect for units just to the right of ri = 0:
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plus a selection bias term:
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� �� �

� � �� � � � � �
0 0

0 0
	

measuring differences in a local neighborhood of ri = 0 that would have occurred 
even without treatment (i.e., if class size could be only large). What conditions are 
needed to ensure that the latter term is zero? A closer look at the two terms in the 
last expression reveals an idea of continuity. The condition:
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0 0
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–

	 (3.6)

is sufficient to eliminate selection bias and is equivalent to assuming that the relation-
ship between the outcome Yi(0) and grade enrollment is continuous at ri = 0. This is a 
mild regularity condition, which most likely holds in most applications, and has a very 
simple interpretation: our hopes to give any causal interpretation to discontinuities in 
school performance observed around Maimonides’ cutoffs must rest on the assump-
tion that there would have been no discontinuity in performance crossing from ri

– = 0  
over to ri

� � 0  had the Maimonides’ rule been irrelevant for forming a small class. 
Assumption (3.6) combined with its counterpart for the Yi(1) outcome:

	
lim | lim ( | ),
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0 0
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ensures:
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.
	 (3.8) 

Assumption (3.7) brings to the problem the same regularity condition in (3.6), 
with a similar interpretation. 

The notion of continuity of potential outcomes around Maimonides’ cutoffs is 
evocative of the properties of a full randomization of students to small and large 
classes in schools with grade enrollment near ri = 0. For example, assumption (3.6) 
can be interpreted as an independence condition between Yi(0) and Di locally with 
respect to the Maimonides’ cutoff. This is the same sort of condition that we dis-
cussed in Sect. 3.4 above. It follows that the internal validity of RD estimates 
obtained from (3.8) hinges upon the assumption that students in schools with values 
of ri near zero are as good as randomly assigned to small and large classes, as in a 
local randomized experiment. In Sect. 3.6.4 below, we discuss how potential viola-
tions of such condition may arise in practice and propose some tests to assess the 
plausibility of this assumption. 

Compared to a standard randomized experiment, we pay a price in terms of 
external validity, as RD estimates are internally valid only around Maimonides’ 
cutoffs. The extrapolation of this effect away from the cutoff requires further 
assumptions about the global shape of the potential outcome functions, that must be 
discussed on a case-by-case basis. We refer the interested reader to the work by 
Battistin and Rettore (2008), Angrist and Rokkanen (2015), Dong and Lewbel 
(2015), and Bertanha and Imbens (2020). 

RD estimates of causal effects are obtained from the sample analogue of the 
expression in (3.8).12 The simplest way to proceed is by comparing the mean sample 
outcomes for small and large classes within a fixed distance from the Maimonides’ 
cutoff ri  =  0. The simplicity of this estimator is very appealing, but we may 

12 Lee and Lemieux (2010) provide a thorough discussion of estimation issues in RD designs. We 
refer the interested reader to their survey for additional details.
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encounter statistical validity issues if the data are “sparse” around the Maimonides’ 
cutoff. In fact, we face a trade-off. On the one hand, to enhance statistical validity, 
we would be tempted to enlarge the width of the neighborhood around the 
Maimonides’ cutoff considered for estimation. On the other hand, by so doing, we 
would end up using also data points far away from the cutoff. If the relationship 
between Yi and ri was not flat, this could endanger the internal validity of the design. 

To minimize this trade-off, researchers often rely on semi-parametric estimators. 
Kernel-weighted local regressions of the outcome on a low-order (linear or qua-
dratic) polynomial in ri estimated separately for classes to the left and to the right of 
ri are the most common option (as in Fig. 3.4). By giving a larger weight to data 
point that are closer to the cutoff and allowing for a non-flat relationship between 
test scores and enrollment, this estimator permits to enlarge sample size while main-
taining internal validity. A flexible parametric regression of Yi and ri that uses all the 
available data could also be an option when sample size is small, but this may raise 
additional issues if high-order polynomials are adopted (see Gelman & Imbens, 
2019).  

3.6.3.2 � The Fuzzy RD Design 

When compliance with the Maimonides’ rule is far from perfect, as in Italian pri-
mary schools, the sharp setting described in the previous section no longer applies. 
The fuzziness introduced by non-compliance can be dealt with using the class size 
predicted from the Maimonides’ rule as an instrumental variable for the actual class 
size. The key assumption underlying this approach is that the regulation on class 
size formation must influence standardized tests only because the regulation affects 
how classes are eventually formed. This is, once again, an exclusion restriction of 
the form discussed in Sect. 3.5.3.3, above. 

A few refinements of this idea are needed in this setting because the Maimonides’ 
rule yields experimental-like variation only near ri = 0, implying that the “as good 
as random” condition in Sect. 3.5.3.2 must hold only locally with respect to this 
point. Complying classes here are those turning small because of compliance with 
the class size regulation when grade enrollment crosses from ri

– = 0  over to ri
� � 0  

(see Sect. 3.5.3.1). Moreover, the first-stage condition, which ensures that the 
Maimonides’ rule shapes—at least in part—the way classes in Italy are eventually 
formed stems from the following contrast:

	
lim | lim |
r

i i
r

i iE D r r E D r r
� ��

�� � �� �
0 0

–
–

.
	 (3.9)

Eq. 3.9 compares the share of small classes just above and just below the 
Maimonides’ cutoff ri = 0. Contrary to the case of a sharp RD, where this contrast 
is one because of full compliance, fuzziness arising from it makes this quantity 
lower than one depending on the number of complying classes. The more severe is 
the extent of non-compliance, the lower will be the external validity of the causal 
conclusions, as we discussed in Sect. 3.5.5. 
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The same argument used in Sect. 3.5 extends to the case considered here and can 
be used to write:

	

E Y Y C r
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	 (3.10)

 The expression in Eq. 3.10 reveals that a causal effect is retrieved by the ratio of 
the discontinuities in the outcome and in the treatment probability at the Maimonides’ 
cutoff. This expression bears strong similarities with Eq. 3.4 above, once we assign 
the role played by the instrumental variable to a dummy for being above the 
Maimonides’ cutoff, Zi = 1(ri ≥ 0). In fact, Hahn et al. (2001) showed that non-
compliance leads the fuzzy RD design to be informative about a local average treat-
ment effect, strengthening this similarity. However, the parameter uncovered by the 
fuzzy RD is local in two senses. First, it refers only to complying classes. Second, 
it yields causal conclusions only about classes with a value of ri close to 0, limiting 
external validity even further. 

Following the analogy to the instrumental variable case, discussed in Sect. 3.5, 
estimation of fuzzy RD effects is usually carried out using two-stage least square 
(TSLS) methods. The general idea is to instrument the treatment dummy Di with the 
dummy Zi = 1(ri ≥ 0). As in the sharp RD case, researchers can choose to model the 
relationship between test scores and enrollment using either parsimonious local 
regressions or flexible global polynomial regressions. In general, and unlike in the 
sharp RD case, a single TSLS regression is estimated using data on both sides of the 
cutoff but permitting the polynomial in ri to have a different shape on each side of 
the cutoff. This is done by including interaction terms between the polynomial in ri 
and Di that are instrumented by interaction terms between the polynomial in ri 
and Zi.13 

The estimated fuzzy RD effects of class size on test scores for our running exam-
ple are reported in Table 3.6 and show a negative and significant effect of class size 
reduction for compliers at the relevant discontinuity cutoffs. For simplicity, these 
are obtained using continuous class size. For instance, according to the estimates 
reported in Column (1) of Panel A, when we consider data for the whole of Italy, we 
estimate that math scores would increase by an average of 0.06 standard deviations 
if we decreased class size by 1 unit. As revealed by Columns (2) and (3) and in 
accordance with Fig. 3.4, the magnitude of such effect is much larger in Southern 
Italy than in the rest of the country.   

13 Further details about estimation in the fuzzy RD design are discussed in Lee and Lemieux 
(2010a, b).
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Table 3.6  Local average treatment effect of class size on test scores (Angrist et al., 2017)

Test scores
Italy North/Center South

(1) (2) (3)
A. Math

Class size −0.0609a −0.0417a −0.1294a

(0.0196) (0.0171) (0.0507)
N 140,010 87,498 52,512

B. Language
Class size −0.0409a −0.0215 −0.0937b

(0.0155) (0.0136) (0.0403)
N 140,010 87,498 52,512

The table reports 2SLS estimates using class size cutoffs as an instrument. All models control for 
a quadratic in grade enrollment, segment dummies, and their interactions. The unit of observation 
is the class. Class size coefficients show the effect of 10 students. Robust standard errors, clustered 
on school and grade, are shown in parentheses. Control variables include % female students, % 
immigrants, % fathers at least high school graduate, % employed mothers, % unemployed moth-
ers, % mother NILF, grade and year dummies, and dummies for missing values. All regressions 
include sampling strata controls (grade enrollment at institution, region dummies, and their inter-
actions). ap<0.01, bp<0.05, cp<0.1

3.6.4   �Validating the Internal Validity of the Design

An underlying assumption behind the approach discussed so far is that units cannot 
precisely manipulate their value of the running variable. For instance, suppose that par-
ents of pupils with above-average ability could perfectly predict enrollment by school 
and choose to apply only for schools where enrollment is locally above the relevant 
cutoffs so that their pupils would systematically end up in smaller classes.14 If this was 
the case, then the RD design would be invalid, as the ability composition of pupils in 
schools where enrollment is just above and just below the cutoff would be different. 

In general, if units cannot precisely manipulate their value of the score, there 
should be no systematic differences between units with similar values of the score. 
Therefore, a test for the internal validity of an RD design is to verify whether there 
are discontinuities in these covariates at the cutoff. If predetermined variables that 
correlate with the outcome are discontinuous at the cutoff, then continuity of poten-
tial outcomes is unlikely to hold. These tests are akin to the “balancing” tests pre-
sented for the pure randomization case but are carried out locally, at the cutoff. 

Table 3.7 reports results for these tests and shows precisely estimated zero effects 
of passing the RD cutoffs on some predetermined controls, such as the share of 
students present in class on the day of the test, supporting the validity of this RD 
design.   

14 For instance, Urquiola and Verhoogen (2009) show evidence of discontinuities between enroll-
ment and household characteristics in Chilean private schools.
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Table 3.7  Covariate balance for class size discontinuities (Angrist et al., 2017)

Italy North/Center South
Control 
mean

Treatment 
difference

Control 
mean

Treatment 
difference

Control 
mean

Treatment 
difference

(1) (2) (3) (4) (5) (6)
% in class 
sitting the test

0.9392 0.0000 0.9345 0.0001 0.9471 0.0000
[0.0643] (0.0001) [0.0657] (0.0001) [0.061] (0.0001)

% in school 
sitting the test

0.9386 0.0001 0.9339 0.0001 0.9464 0.0001
[0.0534] (0.0001) [0.0548] (0.0001) [0.05] (0.0001)

% in institution 
sitting the test

0.9374 −0.0001 0.9327 −0.0001 0.9451 −0.0000
[0.0436] (0.0001) [0.0426] (0.0001) [0.0441] (0.0001)

N 140,010 87,498 52,512

Columns 1, 3, and 5 show means and standard deviations for variables listed at the left. Other 
columns report coefficients from regressions of each variable on predicted class size, a quadratic 
in grade enrollment, segment dummies and their interactions, grade and year dummies, and sam-
pling strata controls (grade enrollment at institution, region dummies, and their interactions). 
Standard deviations for the control group are in square brackets; robust standard errors are in 
parentheses. ap<0.01, bp<0.05, cp<0.1

3.7 � Conclusion

This chapter has discussed a selected number of approaches among the most popu-
lar in the toolbox of good empiricists interested in causal relationships. 
Randomization, instrumental variation, and discontinuity designs are very closely 
related members of the same family and, when properly implemented, are thought 
to yield the most credible estimates of the causal effects of public interventions. 

The beauty of randomized assignment is that the composition of “treatment” and 
“control” groups is by design not driven by any form of selection. In this case, dif-
ferences in the composition of groups due to sampling variation tend to vanish as 
sample size increases so that the main concern should be the one of statistical valid-
ity. External validity and general equilibrium effects may also be a concern, espe-
cially if the intervention has to be implemented in different contexts or scaled up to 
cover a whole country. 

Instrumental variation is a good way to go when randomized assignment is not 
viable. It seeks sources of random variation that have affected indirectly the chance 
of receiving “treatment.” Clearly, a good source of variability must affect only the 
treatment assignment and, through this, the outcome of interest. Sources of external 
random variation affecting at the same time both treatment allocation and the out-
come will not allow to distinguish the effect of the instrument on the outcome from 
the effect of the treatment on the same outcome. As we have made clear, the price to 
pay for the lack of randomized assignment to treatment is external validity: esti-
mates of causal effects obtained from instrumental variation are limited to the frac-
tion of the population changing the treatment status because of the instrument. How 
large and comparable this fraction is with respect to the entire population is an 
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Fig. 3.5  Score manipulation by enrollment among second-grade students, centered at the RD 
cutoffs (Angrist et al., 2017). (Graphs plot residuals from a regression of test scores on the follow-
ing controls: % female students, % immigrants, % fathers at least high school graduate, % 
employed mothers, % unemployed mothers, % mother NILF, grade and year dummies, and pro-
portions of missing values in these variables. All regressions additionally include sampling strata 
controls (grade enrollment at institution, region dummies, and their interactions). The solid line 
shows a one-sided LLR fit)

empirical matter, which should be discussed on a case-by-case basis. We have dis-
cussed some test for homogeneity of potential outcomes that allow to extend valid-
ity to the whole population of interest. 

Finally, the idea of regression discontinuity is most easily put across by thinking 
of a properly conducted randomization only locally with respect to the discontinuity 
cutoff. The pros are clear-cut, and the cons concern the external validity of the esti-
mates away from the relevant discontinuity. 

What else could possibly go wrong? Books and chapters like this are always 
written to show a path forward for the implementation of methods. The day-to-day 
experience as a researcher is way more intricate. For example, Figure 3.5 taken from 
Angrist et al. (2017) casts doubt on the validity of the assumptions used in our dis-
cussion on the effects of class size. It shows that score manipulation also changes 
discontinuously at ri = 0 in Southern Italy, suggesting that teachers in small classes 
are more likely to manipulate scores. As a result, the alleged causal effect of class 
size on test scores in Southern Italy discussed above does not reflect more learning 
in smaller classes, but increased manipulation of scores in smaller classes. As dis-
cussed by Angrist et al. (2017), these findings show how class size effects can be 
misleading even where internal validity is probably not an issue. 

This example should prompt the reader to weigh methods with a grain of salt and 
a proactive attitude: the most credible approach to causal inference is often a com-
bination of different identification strategies, and its credibility must stem from the 
institutional context under investigation rather than clueless statistical assumptions. 

Review Questions 

	1.	 Why is the naïve comparison of mean outcomes for treated and control subjects 
not always informative of a causal effect?  
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	2.	  What are the differences between internal, external, and statistical validity of a 
research design?  

	3.	 How does random assignment of the treatment help to achieve internal validity?  
	4.	 Under which assumptions do natural experiments and discontinuities provide a 

feasible avenue to estimate causal relationships?  
 	5.	What is the price to pay in terms of validity when pursuing these empirical strat-

egies with respect to a proper randomization?       

Replication Material 
Access to data and codes is available from the American Economic Association 
website at: https://www.aeaweb.org/articles?id=10.1257/app.20160267        
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Chapter 4
Correlation Is Not Causation, Yet… 
Matching and Weighting for Better 
Counterfactuals

Fedra Negri

Abstract  Anyone who has attended a statistics class has heard the old adage “cor-
relation does not imply causation,” usually followed by a series of hilarious graphs 
showing spurious correlations. Even if we strongly agree with it, this reminder has 
been taken a little too far: it is repeated like a mantra to criticize every observational 
study as being unable to detect causation behind statistical association. This chapter 
helps the reader go beyond the mantra, firstly, by explaining that “correlation does 
not imply causation” in observational studies because of selection bias (i.e. the com-
position of treatment and control groups follows a non-random selection) and para-
metric model dependence. Then, it introduces readers to weighting and matching 
techniques, smart statistical tools for reducing imbalance in the empirical distribu-
tion of pretreatment covariates between the treatment and control groups. Lastly, it 
provides an empirical illustration by focusing on two powerful algorithms: the 
entropy balancing (EB) and the coarsened exact matching (CEM). The chapter ends 
with caveats.

Learning Objectives
After studying this chapter, you should be able to:

•	 Understand under which assumptions correlation unveils causation in observa-
tional studies.

•	 Understand the inferential logic behind the commonest propensity score match-
ing procedures and their key implementation steps.

•	 Understand the logical and computational problems related to the so-called “pro-
pensity score tautology”.

•	 Grasp the theoretical and computational improvements introduced by entropy 
balancing and coarsened exact matching, respectively.
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•	 Generate well-balanced samples on the statistical software Stata through the 
ebalance and the cem algorithms.

•	 Openly discuss the necessary conditions for their inferences on observational 
data to justify a causal interpretation.

4.1 � Introduction

The very first notion almost everyone learns in their introductory statistics classes is 
that “correlation does not imply causation.” Usually, students are presented with 
several examples of spurious correlations to stress that just because two variables 
move in tandem, this does not necessarily signal a causal relationship between 
them. A typical example is the negative and statistically significant correlation 
between final college grades and the amount of time students spend studying 
(Atkinson et  al., 1996), and a number of funny graphs are available online (see: 
www.tylervigen.com).

Let us put it clearly: we strongly agree that “correlation does not imply causa-
tion.” However, we also think that in the everyday practice of statistics and espe-
cially statistics teaching, the message this sentence carries has been taken a little too 
far and beyond its scope. In fact, it is repeated like a mantra, to criticize every 
observational study as being unable to detect causation behind statistical associa-
tion. The warning “correlation does not imply causation” has made many social 
scientists feel so uncomfortable with causal inference that they even try to avoid 
causal language (King et al., 1994: 75–76). Terms such as “effect” or “impact” and 
verbs such as “to determine” or “to shape” are routinely avoided in scientific publi-
cations and replaced by the calculatedly ambiguous “association” and “link” and 
“to increase/to decrease” (Hernán, 2018).

Here, two related points should be stressed. First, while “correlation does not 
imply causation” for sure, “causation does imply correlation”: if two variables are 
causally related, a change in one has to trigger a change in the other (Cook & 
Campbell, 1979; Miles & Shevlin, 2001: 113). Second, even when a statistical asso-
ciation, such as a regression coefficient, supports our preexisting views, theoretical 
claims, or a scenario we wish to be true (the so-called confirmation bias), uncer-
tainty about causal inference will never be completely eliminated in observational 
studies. Thus, a statistical association is a non-sufficient, but still necessary, condi-
tion to make a causal claim. This means that we should not give up. Rather, we 
should provide the reader with the best and most honest estimate of the uncertainty 
of our causal claims (King et al., 1994: 75–76).

The chapter is structured as follows. Section 4.2 explains why “correlation does 
not imply causation” in observational studies, i.e.  because of selection bias and 
model dependence. Section 4.3 introduces the reader to matching procedures, smart 
statistical tools that adjust for composition to correct for selection bias due to 
observable characteristics (Chap. 3, Sect. 3.2.5 and 3.2.6, provides a more general 
discussion on selection bias given by unobservable factors). In detail, this section 
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reviews and simplifies for the reader the latest contributions in the matching litera-
ture to emphasize both strengths and limitations of these techniques. Section 4.4 
provides an application using the statistical software Stata by describing the algo-
rithms developed by Heinmueller (2012), Iacus et  al. (2009, 2011, 2012, 2019). 
Some caveats complete the chapter.

4.2 � Not Just a Mantra: Correlation Is Not 
Causation Because…

4.2.1 � Causal Inference Entails an Identification Problem

Causal inference (i.e. the process by which we make claims about causal relation-
ships) can be thought of as an identification problem. Informally, a parameter is 
identified in a model if it is theoretically possible to learn its true value with an 
infinite number of observations (Matzkin, 2007: section 3.1). An identification 
problem arises when we do not have enough information to learn the true value of 
that parameter even if the sample is infinite (Manski, 1995).

The potential outcomes framework (Rubin, 1974; Holland, 1986) formalizes the 
causal inference identification problem and labels it as the “fundamental problem of 
causal inference.” As discussed at length in Chap. 3 (see Sects. 3.2.2 and 3.2.3 for 
details), in the potential outcome framework, each unit i has two potential outcomes, 
Yi(1) if unit i is treated (Di = 1) and Yi(0) if unit i is untreated (Di = 0), but only one 
actual outcome, which depends on the actual treatment that unit i receives. Thus, the 
unit-level treatment effect, Δi = Yi(1) − Yi(0), is impossible to estimate because one 
of the two potential outcomes cannot be identified for each unit: for treated units, we 
observe Yi = Yi(1) only; for control units, we observe Yi = Yi(0) only.

Usually, we focus on the average treatment effect (ATE), which is the difference 
in the pair of potential outcomes averaged over the entire population of interest: 
ATE = E(Yi(1) − Yi(0)). Frequently, the ATE is defined for the subpopulation exposed 
to the treatment, the average treatment effect for the treated (ATT): 
ATT = E(Yi(1) − Yi(0)| Di = 1). Analogously, the average treatment effect for the 
non-treated (ATNT) is given by: ATNT = E(Yi(1) − Yi(0)| Di = 0).

However, moving from the unit-level treatment effect to the average treatment 
effects for the treated (ATT) or the non-treated (ATNT) does not solve our initial 
causal inference identification problem. Indeed, as regards the ATT, no additional 
amount of data will allow us to observe the average outcome under control for those 
units in the treatment condition, E(Yi(0)|Di = 1). Moving to the ATNT, no additional 
amount of data will allow us to observe the average outcome under treatment for 
those units in the control condition, E(Yi(1)| Di = 0). The advanced reader may find 
a more formalized discussion in Keele (2015: 314–318).

Thus, the potential outcomes framework helps us in understanding that causal 
inference entails an unavoidable identification problem. Since no additional data 
can help us in solving this problem, we need to find a credible identification strategy.
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4.2.2 � Each Identification Strategy Entails a Set of Assumptions

An identification strategy is a research design and entails a set of assumptions, 
whose plausibility critically depends on the empirical context and should be dis-
cussed on a case-by-case basis (Angrist & Pischke, 2009; Morgan & Winship, 
2014). The plausibility of some assumptions is testable. Think, for example, of the 
degree of compliance with the treatment assignment in a randomized experiment or 
to the first-stage requirement in a natural experiment with instrumental variation 
(see Chap. 3, Sect. 3.5.3.4, for details). Unfortunately, this is not always the case: 
untestable assumptions are unavoidable in causal inference. This is why reasoning 
about the plausibility of the assumptions entailed by the research design the 
researcher has chosen is a crucial preliminary step for social scientists aiming at 
detecting causal effects. This step precedes data collection and statistical analysis 
and often involves qualitative information about the institutional and empirical con-
text (Keele, 2015: 323–324).

In what follows, we summarize the assumptions needed for statistical estimates 
to be given a causal interpretation under different research designs. Chapter 3 has 
already described three common research designs: randomized experiments, where 
treatment assignment is random, and quasi-experiments providing convincing sub-
stitutes to randomization, namely, instrumental variation and regression discontinu-
ity designs (see Chap. 3, Sect. 3.5 and 3.6, for details).

Ideally, randomized experiments can achieve valid and relatively straightforward 
causal inferences if three requirements are met: (1) random selection of units to be 
observed from a given population, (2) random assignment of values of the treatment 
to each observed unit, and (3) large sample size. Random selection (1) avoids selec-
tion bias by guaranteeing that the probability of selection from a given population is 
related to the potential outcomes only by random chance. Combining random selec-
tion (1) with large sample size (3) guarantees that the chance that something will go 
wrong is extremely small. Random assignment (2) guarantees the absence of omit-
ted variable bias even without any control variables included. Here, too, random 
assignment (2) plus large sample size (3) minimizes the chance of omitted variable 
bias (Ho et al., 2007: 205–206; see also Chap. 3, Sect. 3.4, for details).

However, social science research usually uses observational data that do not 
meet all of the three requirements. For example, survey research guarantees large 
sample size (3), but it is becoming more and more difficult to randomly select 
respondents due to increasing nonresponse rates (1), and it is almost impossible to 
fulfil random assignment requirement (2).

When dealing with observational data, a key further assumption is needed for 
statistical estimates to be given a causal interpretation: the so-called “selection on 
observables” assumption (Barnow et al., 1980; Heckman & Robb, 1985). Informally, 
the researcher has to assume that there is a set of covariates Xi such that treatment 
assignment Di is random conditional on these covariates. This assumption is non-
refutable because it cannot be verified with observed data (Manski, 2007).
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This assumption has a number of different names. In econometrics, it is also 
known as “no omitted variable bias,” to emphasize that the model specification must 
include all the variables that are causally prior to the treatment assignment Di, that 
are empirically related to Di, and that affect the observed potential outcome Yi, con-
ditional on Di (Goldberger, 1991; King et al., 1994: 76–82). Remember that only 
random assignment guarantees that Di is independent of any Xi, whether measured 
or not, except by random chance (see Chap. 3, Sect. 3.4).

In statistics, the same assumption is known as “ignorability,” to underline that the 
treatment assignment Di  and the unobserved potential outcomes are independent 
after conditioning on a set of covariates Xi and the observed potential outcomes so 
that there are no unobserved factors capable of biasing our estimates (Rubin, 1978). 
Alternative labels are the “absence of unmeasured confounding” or “conditional 
independence assumption.”

Whatever the name, “selection on observables is a very strong assumption [...]. 
Generally, selection on observables needs to be combined with a number of differ-
ent design elements before it becomes credible” (Keele, 2015: 322). Indeed, even 
admitting that the researcher has in mind the list of “correct” covariates to be incor-
porated in the model specification to meet this assumption, (1) additional data col-
lection may be expensive and onerous, and (2) long model specifications increase 
the likelihood of incurring into over or bad control (Angrist & Pischke, 2009: 69). 
Problem (2) arises when we include in the model specification posttreatment covari-
ates. In an experimental setting, it is quite easy to identify pretreatment and post-
treatment covariates. With observational data, things get harder. Think, for example, 
about the items of a survey: if we exclude respondents’ exogenous characteristics 
such as age, gender, citizenship, or parental level of education, it may be hard to 
state for sure that a covariate is “truly” pretreatment, and thus, it is not a conse-
quence of Di. Note that a further complication, known as the “M-bias” (Pearl, 2009a, 
b) will be discussed at length in Chap. 6.

This section aims to make it clear that there is no easy way-out and there is no 
magic. The identification problem cannot be solved by simply looking at data. 
Rather, we need to resort to identification strategies and each of them rests on a 
series of assumptions. When the data are observational, a very strong assumption is 
added to the list: the “selection on observables” one. This is the reason why “cor-
relation [per se] does not imply causation.” However, this is not the end of the story: 
selection on observables can be combined with statistical tools to boost its credibil-
ity (Keele, 2015).

4.2.3 � Last but not Least: Model Dependence

Of course, any specific statistical tool we choose to boost the credibility of our iden-
tification strategy will make additional assumptions (Ho et al., 2007: 2010–2011).
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Let us be honest: as social and political scientists, we usually spend a con-
siderable amount of time in collecting, merging, cleaning, and recoding raw 
data. Then, we finally load our data set into our favorite statistical software 
and run several model specifications by using the parametric statistical tech-
nique that best fits our data (e.g., OLS, discrete choice models, duration mod-
els, etc.).

The main problem with this common procedure is that all parametric methods 
assume that we know the “right” model specification before looking at the esti-
mates. A model is “right” if it is (a really good approximation to) the data-generating 
process. Otherwise, the model will miss important aspects of reality and inference 
will be systematically wrong or overly precise.

Instead, what happens in everyday research is that we start from a generic model 
specification suggested by our theoretical framework, previous works, or common 
sense, and then, we modify it by adding or removing control variables and interac-
tion terms, changing the operationalization of some variables or the functional form, 
restricting the sample, etc.

Following this inductive procedure, we end up with several alternative estimates 
of the statistical relationship between our variable of interest and the dependent 
variable. However, to improve readability, we typically choose no more than ten 
model specifications to be included in our written work. This choice, made after 
looking at the estimates, entails methodological and ethical dilemmas. Moreover, it 
forces us to convince the readers (and the reviewers) that we have picked up the 
“right” specifications, not simply the ones that most supported our starting 
hypotheses.

Thus, even if rarely admitted, correlation also does not imply causation in obser-
vational studies because effect estimates may be model dependent, at least to some 
degree (Ho et al., 2007).

4.3 � Preprocessing Data with Matching to Improve 
the Credibility of the Estimates

Imagine we want to estimate the effect of a policy in situations when controlled 
randomization is unfeasible, unethical, or politically sensitive and there are no con-
vincing natural experiments providing a substitute for randomization such as the 
ones described in Chap. 3, Sects. 3.5 and 3.6 (i.e., instrumental variation and RDD). 
In these situations, matching may be a powerful non-parametric technique for 
boosting the credibility of the estimates. It is grounded on the idea that some serious 
statistical problems (i.e. model dependence, estimation error, and bias) can be 
downplayed by dropping heterogeneous observations from the raw data and thus 
limiting inferences to a carefully selected subsample.
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4.3.1 � No Magic: What Matching Can and Cannot Do

Before addressing any technicality, we want to stress a key point about matching. It 
is not a method of estimation of causal effects, it is “only” a non-parametric statisti-
cal tool for preprocessing raw data so that the treatment group becomes as similar 
as possible to the control group on a set of covariates chosen by the researcher 
(Arceneaux et al., 2006; Sekhon, 2009). Once treated units have been matched with 
control ones according to one among the available matching procedures, some 
method of estimation is needed to obtain an estimate of the causal effect. If the treat-
ment and control groups are exactly balanced on the set of covariates chosen by the 
researcher (i.e. if the treatment and control covariate distributions are the same), 
then the method of estimation can credibly be a simple difference in means between 
the outcomes of the two groups. However, if the two groups are not exactly balanced 
(i.e. if there are still systematic differences between them, as usually happens), then 
the researcher has to further adjust the matched sample by using the parametric 
model they would have used anyway (e.g., Ho et al., 2007; Iacus et al., 2019). Thus, 
matching is just a convincing way to select the observations on which some meth-
ods of estimation should be later applied (with their own additional assumptions).

Exactly as when we interpret the coefficient of a multivariate regression model 
as a causal effect, matching procedures are grounded on the strong assumption of 
selection on observables. This means that it should be theoretically plausible that 
selection into treatment is completely determined by a set of covariates Xi that can 
be observed by the researcher such that conditioning on Xi, the assignment to treat-
ment is as good as random. To put it differently, it should be theoretically plausible 
that there are not additional unobservable variables capable of pushing units into 
treatment.1

1 Given that both matching and regression are based on the selection on observables assumption, 
the reader may wonder whether matching is really different from a regression with properly identi-
fied control variables. This question is the object of a heated debate among methodologists. Some 
maintained that both regression and matching are control strategies, and therefore, the differences 
between the two are unlikely to be of major empirical importance (Angrist & Pischke, 2009: sec-
tion 3.3.1). Others have pointed out shortcomings of regression relative to matching: Dehejia and 
Wahba (1999), for example, found that propensity score matching procedures have more closely 
approximate results from a randomized experiment than regression alone. Further, some have 
underlined that regression is a parametric approach imposing a global linear relationship between 
Xs and Y and that it uses all the available observations, thereby involving a certain amount of 
extrapolation, while matching is a non-parametric approach that discards observations for which a 
reasonably close match cannot be found (Martini & Sisti, 2009: 221–225). Others have stated that 
matching involves several choices in its implementation, which could lead to subjectivity in the 
results. According to Imbens and Wooldridge, “the best practice is to combine linear regression 
with either propensity score or matching methods” (2008: 19–20) as in this way, the estimated 
effect will explicitly rely on local, rather than global, linear approximations to the regression func-
tion. Even though adjudicating between these views is beyond the scope of this chapter, the appli-
cation discussed in Sect. 4.4 embraces this last suggestion and thus combines the CEM algorithm 
with OLS regression.
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However, compared to regression, preprocessing raw data with matching elimi-
nates, or at least reduces, the selection bias due to the set of covariates chosen by the 
researcher, which renders any subsequent parametric adjustment either irrelevant (if 
balance is fully achieved) or less important (if balance is partially achieved). To put 
it simply, given the plausibility of the selection on observables assumption, prepro-
cessing data with matching makes causal effect estimates based on the subsequent 
parametric analyses far less dependent on modeling choices and specifications. 
Quoting Ho et al. (2007: 233): “Analysts using preprocessing have two chances to 
get their analyses right, in that if either the matching procedure or the subsequent 
parametric analysis is specified correctly (and even if one of the two is incorrectly 
specified), causal estimates will still be consistent” (on this, see also Robins & 
Rotnitzky, 2001). Moreover, it has been proved that when matching is applied care-
fully so that n is not much smaller in the matched sample than in the original sam-
ple, it leads to a reduction in both bias and variance of estimates from subsequent 
parametric analyses (Rubin & Thomas, 1996; Imai & van Dyk, 2004).

4.3.2 � Useful Starting Point: Exact Matching

Let us formalize the selection on observables assumption. Remember that we aim to 
estimate the average treatment effect for the treated: ATT = E(Yi(1) − Yi(0)| Di = 1). 
Unfortunately, we do not observe the average outcome under control for those units 
in the treatment condition, E(Yi(0)|Di = 1). Instead, we observe the average outcome 
under control for those units in the control condition, E(Yi(0)|Di = 0). As discussed 
in Chap. 3, Sect. 3.2.3, a naive comparison of outcomes by treatment status provides 
a biased estimate of the ATT:
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The first term on the right-hand side of the equation is the ATT (the quantity we are 
interested in); the second term is the sample selection bias that accounts for the dif-
ferences in outcome under control between treated and control units. We already 
know that only if the three requirements of an ideal RCT are met (i.e. (1) random 
selection, (2) random treatment assignment, and (3) large sample size), the sample 
selection bias is zero, and thus, the naive comparison of outcomes by treatment 
status provides an unbiased estimate of the ATT.

Now, let Xi be a set of pretreatment covariates. The selection of the set of covari-
ates Xi by the researcher is a critical step. According to the usual rules for avoiding 
omitted variable bias, Xi should include all variables that affect both the treatment 
assignment Di and, controlling for the treatment, the dependent variable Yi (this does 
not mean that every available pretreatment variable should be included in Xi because 
it will reduce efficiency). However, to avoid a “posttreatment bias” (King & Zeng, 
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2007), variables that may be even remotely consequences of the treatment variable 
should never be included in Xi (Cox, 1958: section 4.2; Rosenbaum, 1984; 
Rosenbaum, 2002: 73–4).

According to the selection on observables assumption, once we condition on Xi, 
assignment to treatment Di is independent from the unobserved potential outcomes 
Yi(0) and Yi(1):

	
Y Y D Xi i i i1 0� � � � �,

	

Under this assumption, conditioning on Xi, the average outcome under control for 
those units in the control condition is equal to the average outcome under control for 
those units in the treatment condition:

	
E Y D X E Y D X E Y Xi i i i i i i i0 0 0 1 0� � �� � � � � �� � � � �� �| , | , |

	

Similarly, conditioning on Xi, the average outcome under treatment for those units 
in the control condition is equal to the average outcome under treatment for those 
units in the treatment condition:

	
E Y D X E Y D X E Y Xi i i i i i i i1 0 1 1 1� � �� � � � � �� � � � �� �| , | , |

	

Thus, the expected value of Yi is independent from Di, given Xi. Using the Law of 
Iterated Expectations, the ATT is given by:
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The term E [ Yi(0)| Di = 1, Xi] is counterfactual, but under the selection on observ-
ables assumption, we have:

	
ATT E E Y D X E Y D X Di i i i i i i� � � ��� �� � � ��� �� ��� ��1 1 0 0 1| , | , |–

	

We can rewrite it as:

	
ATT E Dx i� �� �� | 1

	

where δx is the difference in means by treatment status at each value of Xi.
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This is the identification strategy employed by the so-called “exact matching.” 
Informally, it suggests preprocessing the data so that each treated unit is matched 
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with all the available control units that have exactly the same covariates values (do 
not confuse the exact matching with the one-to-one exact matching, which is more 
limited because it uses only one control unit for each treated unit). If, after exact 
matching, a large number of treated units are exactly matched with one or more 
control units, then we have an exact balance with little inefficiency. This means that 
a (weighted) difference between the average outcomes of matched treated and con-
trol units is sufficient to obtain an unbiased estimate of the ATT.  We added 
“weighted” in parentheses because, since each treated unit can be matched with 
more than one control unit, a weighted difference in means across exactly matched 
subclasses is suggested to account for the difference in the number of treated and 
control units. Beware that if some treated units cannot be matched because there is 
not at least one control unit with exactly the same covariates values, the exact 
matching procedure drops these treated units. By dropping some treated units, we 
alter the estimand: it is no longer the ATT, but a more local version of it (Crump 
et al., 2009; Rubin, 2010). As discussed in Chap. 3, Sect. 3.3.3, this may weaken the 
external validity of the estimates. This choice is reasonable as long as the researcher 
is transparent about it and its consequences in terms of the new set of treated units 
over which the causal effect is defined (Iacus et al., 2012: 5).

If an insufficient number of exact matches are found, and thus, many treated 
units have to be discarded, the researcher has to switch to other matching proce-
dures that preprocess the data so that each treated unit is matched with all the avail-
able control units that have approximately the same covariates values.

4.3.3 � Propensity Score Tautology

The best practice for approximate matching procedures involves two steps. The first 
step drops treated and control units outside the so-called “common support” of both 
groups. Informally, the common support assumption requires that for any treated 
unit with given covariate values, it is also possible to observe a control unit with the 
same (or approximately the same) covariate values. Thus, ensuring common sup-
port requires the researcher to drop observations where the empirical density of 
treated and control units does not overlap since including these observations would 
require extrapolation from the data, which can generate considerable model 
dependence.

To accomplish this first step, King and Zeng (2007) suggest pruning observations 
from the control group that are outside of the “convex hull” of the treatment group. 
Informally, with one pretreatment covariate X, the convex hull of the treatment 
group is the range of the subset of observations of X that are in the treatment group 
so that control units with values of X greater than max(X|T  =  1) or lower than 
min(X|T = 1) are discarded. Similarly, if any treated units fall outside the convex hull 
of the control units, these are also discarded (see also Iacus & Porro, 2009 for 
another conservative way of identifying common support). Remember once more 
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that dropping treated units changes the estimand: it is no longer the ATT, but a more 
local version of it.

The second step matches treated units with control units so that they are as close 
as possible according to some metric. However, as anticipated, establishing on 
which dimensions the degree of closeness between treated and control units has to 
be evaluated (i.e. selecting the pretreatment covariates to be included into Xi) is not 
easy: the researcher might be willing to include a large set of covariates, many of 
them multivalued or continuous. This problem is known as “the curse of 
dimensionality.”

Rosembaum and Rubin (1983) addressed this problem by developing a matching 
procedure based on the propensity score, defined as the conditional probability of 
receiving the treatment given the pretreatment covariates selected by the researcher. 
They start from the usual selection on observables assumption: once we condition 
on Xi, the average potential outcome under control for those units in the treatment 
condition should be equal to the average potential outcome under control for those 
units in the control condition. Thus, once we condition on Xi, the average potential 
outcome under control should be the same irrespective of the treatment condition:

	
E Y D X E Y D X E Y Xi i i i i i i i0 1 0 0 0� � �� � � � � �� � � � �� �| , | , |

	

They move on by demonstrating that if potential outcomes are independent of treat-
ment status conditional on the set of covariates Xi, then potential outcomes are also 
independent of treatment status conditional on a scalar function of the same covari-
ates Xi, labelled “propensity score.” They collapsed the set of covariates Xi into a 
monodimensional variable that measures, for each unit i, the probability of receiv-
ing treatment given the values of its set of covariates Xi, P(Di = 1| Xi). Usually, it is 
estimated through a logit or a probit function, which regresses Di on a constant term 
and the set of covariates Xi chosen by the researcher, without looking at Yi:
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Approximate matching methods based on the propensity score tend to skip the first 
step and to check for common support only after having estimated the propensity 
score for each observation i. Indeed, they drop control units that have a propensity 
score lower than the minimum or higher than the maximum of the propensity score 
of the treated units (Khandker et al., 2010).

However, the reader may have already realized that the propensity score solution 
by Rosembaum and Rubin (1983) is a tautology. The propensity score has been 
developed to solve the course of dimensionality problem (i.e. too many dimensions 
to be controlled for to match treated and control units). However, since we do not 
know the “true” propensity score, it has to be estimated through a probability model 
that adds the same dimensions as independent variables. Moreover, the only way to 
check the validity of the specification of the estimated propensity score (i.e. to check 
whether the estimated propensity score is a consistent estimate of the “true” 
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propensity score) is to stratify the sample over small propensity score intervals and 
then, for each covariate in each interval, test whether the means of the treated and 
control units are not statistically different. If this is not the case, the researcher has 
to improve the specification of the probit or logit function he/she used to estimate 
the propensity score and start again (Dehejia & Wahba, 1999; Becker & Ichino, 
2002). Unfortunately, there is no way out from the propensity score tautology: “[I]t 
works when it works [when matching on the propensity score balances the raw 
covariates], and when it does not work, it does not work (and when it does not work, 
keep working at it)” (Ho et al., 2007: 219).

4.3.4 � How to Choose Among Matching Procedures?

Once the researcher has estimated the propensity score for each unit i, they have to 
choose a metric to match treated and control units. Several metrics are available: 
they vary in the strategy they follow to select the matches and in the weight they 
associate with each match. Table 4.1 lists the most widely used approximate match-
ing procedures based on the propensity score and provides references for further 
readings (see also Caliendo & Kopeinig, 2008).

Given this long and non-exhaustive list of approximate matching procedures, 
how can we choose among them? The methodological literature does not provide a 
clear-cut answer. Since the main diagnostics of success in matching are balance (i.e. 
the degree to which the treatment and the control group covariate distributions 
resemble each other) and the number of observations remaining after preprocessing 

Table 4.1  Commonest approximate matching techniques based on the propensity score

Technique Description
Further 
readings

Nearest 
neighbor 
matching

For each treated unit, the algorithm finds the control unit with 
the nearest propensity score. This can be done with or without 
replacement. In the former case, an untreated unit can be used 
more than once as a match. In the latter case, if the nearest 
control unit has already been matched to another treated unit, 
the algorithm does not consider it and searches for a new one.

Smith (1997), 
Smith and 
Todd (2005)

Caliper and 
radius 
matching

For each treated unit, the caliper matching algorithm finds the 
closest control unit whose propensity score falls within a 
radius r chosen by the researcher. The radius version matches 
each treated unit with all the control units within the radius r.

Smith and 
Todd (2005), 
Dehejia and 
Wahba (2002)

Stratification 
matching

The algorithm partitions the sample into a set of intervals 
(strata) so that in each stratum, the propensity score of treated 
and control units have the same mean value.

Imbens (2004)

Kernel 
matching

The algorithm matches every treated unit with a weighted 
average of (nearly) all control units with weights that are 
inversely proportional to the distance between the propensity 
scores.

Heckman et al. 
(1997, 1998)
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the raw data, a rule of thumb is to preprocess raw data by running as many approxi-
mate matching procedures as possible. To avoid any confirmation bias, it is crucial 
that the researcher performs this comparison without consulting Y. Then, they have 
to choose the procedure that maximizes balance while keeping n as large as possible 
(Ho et al., 2007). As the reader may have foreseen, this search for the matching 
procedure that maximizes balance and the number of observations may be tedious 
as the researcher has to manually iterate between the available algorithms (Ho et al., 
2007; Iacus et al., 2009; Heinmueller, 2012; King & Nielsen, 2019). Section 4.4 
describes two techniques that address this problem.

To assess balance, Ho et  al. (2007: 221) suggest the following options: first, 
comparing the mean of each variable Xi in the treatment group with the mean of 
each variable in the control group (if one or more of these differences differ by more 
than a quarter of a standard deviation of the respective Xi variable, a better balance 
is needed) (Cochran, 1968); second, comparing treatment and control histograms 
one variable at a time; third, using a quantile–quantile plot (QQ plot) for each vari-
able to compare the full empirical distributions of each variable for the treatment 
and control groups; and lastly, the same QQ plot can be used for the propensity 
scores of the treatment and control groups. Even if tautological (it relies on the pro-
pensity score as a summary of the data to check whether the chosen propensity 
score matching is adequate), it may be a good low-dimensional summary (Ho et al., 
2007: 221–223; see also Rubin, 2001; Austin & Mamdani, 2006; Imai et al., 2008).

One might object that increasing balance by throwing away unmatched observa-
tions will reduce statistical efficiency (i.e. the mean squared error of the estimated 
effect might increase). However, “efficiency should be a secondary concern for 
observational students” (Keele, 2015: 325). In a randomized experiment, where 
selection bias is known to be zero, adding observations simply increases power. On 
the other hand, in an observational study, increasing the sample size may shrink the 
confidence intervals to a point that excludes the “true” treatment effect point esti-
mate (Cochran & Chambers, 1965). Moreover, Rosenbaum (2004, 2005) demon-
strated that in observational studies, reducing unit heterogeneity reduces both 
sampling variability and sensitivity to bias from unobserved covariates. Thus, as a 
rule of thumb, there are reasons for preprocessing raw data through matching pro-
cedures in order to reduce heterogeneity between the treatment and control groups 
according to a set of observable covariates (for theoretical and simulation results, 
see also Rubin & Thomas, 1992, 1996; Imai & Van Dyk, 2004; Imbens, 2004; 
Morgan & Winship, 2014; Stuart, 2010).

4.3.5 � The End: The Parametric Outcome Analysis

Having selected the matching algorithm that maximizes balance while keeping n as 
large as possible, the researcher has to move to the usual parametric analysis to 
obtain a causal effect estimate. Indeed, matching is just a non-parametric statistic 
tool for reweighting or simply discarding units in the raw data so that the treatment 
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and control groups become as similar as possible on a set of observable covariates 
or, to put it differently, so that the treatment variable becomes as close as possible to 
being independent of the background characteristics.

The causal effect can be estimated through a simple (weighted) difference in 
means between the observed outcomes of the treatment and control groups only if 
they are exactly balanced. Indeed, the difference in means is equivalent to regress-
ing Yi on Di without any control variables, thus assuming that Di and Xi are unre-
lated. This assumption is plausible only if exact matching has been achieved for the 
treated units, which is very unlikely. By computing a simple difference in means on 
a preprocessed sample where there is some remaining imbalance between the treat-
ment and the control groups, we would certainly incur in an omitted variable bias.

Thus, whenever the treatment and control groups are not exactly balanced, the 
researcher is better off using the same parametric model he/she would have also 
used on the raw data without preprocessing. Preprocessing data with matching 
makes causal effect estimates based on the subsequent parametric analyses far less 
dependent on modeling choices and specifications (Ho et  al., 2007; (Iacus 
et al., 2019).

4.4 � Empirical Illustration

LaLonde (1986) was the first to assess the performance of several non-experimental 
estimators by using experimental data as a benchmark. His experimental data came 
from the National Supported Work Demonstration (NSWD), a subsidized work 
experience program that took place in 1975–1976 in the United States. The program 
consisted into providing trainees with work in a sheltered training environment and 
then assisting them in finding regular jobs. To take part in the NSWD, potential 
participants had to satisfy a set of eligibility criteria intended to identify individuals 
with significant barriers to employment. Then, actual treatment (i.e. the subsidized 
work experience) was randomized among applicants meeting the eligibility criteria.

Using a simple difference in means between the observed post-intervention earn-
ings of the treatment and control groups, LaLonde (1986) obtained an unbiased 
estimate of the effect of the subsidized work experience: the program was estimated 
to increase post-intervention earnings by $1,794 with a 95% confidence interval of 
[551; 3,038]. Thus, according to this experimental result, the program was success-
ful. Then, he compared this experimental result to those obtained from several non-
experimental estimators applied to the NSWD observations that received training 
(treated units only) and a set of control observations constructed ex post from two 
standard population survey data sets (i.e. CPS and PSID). His findings show that 
alternative non-experimental estimators produce very different estimates, most of 
which deviate substantially from the experimental benchmark.

Several subsequent studies have reanalyzed LaLonde’s results, using more recent 
statistical procedures (e.g., Dehejia & Wahba, 1999; Becker & Ichino, 2002; Smith 
& Todd, 2005; Iacus et al., 2009, 2012, 2019). Notably, Dehejia and Wahba (1999) 
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restricted LaLonde’s data set to individuals from whom data on previous earnings 
were available in 1974 and compared several matching estimations to a fully satu-
rated in X OLS regression (original samples and replication materials are available 
on Dehejia’s page: https://users.nber.org/~rdehejia/nswdata2.html). They concluded 
that matching procedures dominated fully saturated in X regression. However, 
Smith and Todd (2005) showed that Dehejia and Wahba’s findings came from the 
specific sample chosen by the authors, but they did not hold on other samples. Thus, 
they argued that estimating the causal effect by simply preprocessing data with 
matching and then computing a (weighted) difference in mean between the treat-
ment and control groups seems not to perform better than a fully saturated in X OLS 
regression. Thus, as explained in the Sect. 4.3.5, after having preprocessed data with 
the matching procedure that maximizes balance while saving enough of n, a method 
of estimation should be applied. Smith and Todd (2005), for example, found that a 
combination of matching and difference-in-differences performs the best.

This section summarizes and simplifies for the reader the very latest contribution 
in this long querelle about LaLonde results and matching procedures. Indeed, we 
focus on the theoretical refinements by Heinmueller (2012) and Iacus et al. (2019) and 
on the algorithms they, respectively, developed: entropy balancing (EB; Heinmueller 
& Xu, 2013) and coarsened exact matching (CEM; Blackwell et al., 2009).

EB and CEM are similar from several points of view. Both of these techniques 
are used in observational studies to preprocess the raw data prior to the estimation 
of a binary treatment effect under the assumption of selection on observables, and 
both of them are aimed at improving the covariate balance between the treatment 
and control groups. Moreover, both techniques overcome the propensity score tau-
tology by requiring the researcher to establish the desired degree of covariate bal-
ance before the preprocessing adjustment. Lastly, both of them are computationally 
efficient and have been proved to reduce model dependence for the subsequent esti-
mation of the treatment effect via parametric outcome analysis.

However, they also differ in important ways. As explained below, CEM coarsens 
each covariate into substantively meaningful categories identified ex ante by the 
researcher and then matches units exactly on this coarsened scale. Treated and con-
trol units that cannot be exactly matched are discarded. As the reader already knows, 
by discarding treated units, CEM changes the estimand from the ATT to a more 
local treatment effect for the remaining treated units (see Iacus et al., 2009 for rea-
sons for why this can be beneficial). On the other hand, EB leaves the estimand 
unchanged because it does not discard treated units. Sections 4.4.1 and 4.4.2. assist 
readers in getting familiar with these two algorithms.

4.4.1 � Entropy Balancing

EB is a data preprocessing method proposed by Heinmueller (2012). Crudely put, 
the algorithm works as follows. As usual, the researcher has to identify a set of pre-
treatment covariates according to his/her substantive knowledge, previous studies, 
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and data availability. Then, for each covariate, the researcher has to pre-specify a 
potential large set of balance constraints to equate the moments of the covariate 
distribution between the treatment and the control groups. The moments refer to the 
mean (first moment), the variance (second moment), and the skewness (third 
moment). For example, the researcher can request that the mean values (first 
moments) of a set of covariates in the control group exactly equate to the mean 
values of the same set of covariates in the treatment group. Moreover, they can also 
include interaction terms such that, for example, the mean of one covariate is bal-
anced across subgroups of another covariate. Lastly, the algorithm searches for a set 
of entropy weights to satisfy the balance constraints imposed by the researcher, 
while remaining as close as possible to the uniformly distributed base weights to 
prevent loss of information.

EB has several attractive features. Its reweighting scheme directly incorporates 
the researcher’s knowledge about the moments in the treatment group and adjusts 
the weights to balance the covariate distribution exactly in finite samples, without 
discarding any treated unit. These are key improvements as they overcome the time-
consuming search over propensity score models without changing the estimand. 
Moreover, the weights that result from EB can be easily incorporated into any stan-
dard statistical model the researcher would have used even without the preprocess-
ing step.

To illustrate the functioning of EB, Heinmueller and Xu (2013) rely on the subset 
of the original LaLonde data set (1986) already used by Dehejia and Wahba (1999). 
The data set provides information on 185 treated units from the NSWD that were 
involved in the subsidized work experience and 15,992 non-participants from the 
Current Population Survey Social Security Administration File (CPS-1). The for-
mer constitutes the treatment group, and the latter the control group. Remember that 
this control group is not the one identified through randomization during the 
NSWD. Instead, this control group is built ex post by using the CPS.

The treatment variable, treat, is 1 for participants and 0 for nonparticipants. The 
outcome variable is real earnings in 1978 US dollars (re78). The available pretreat-
ment covariates include age (age), years of education (educ), marital status (mar-
ried), lack of a high school diploma (nodegree), race (black, hispanic), indicator 
variables for unemployment in 1974 (u74) and 1975 (u75), and real earnings in 
1974 (re74) and 1975 (re75). The estimand is the increase in earnings in 1978 due 
to the subsidized work experience.

By simply regressing re78 on the treatment variable and all the controls, it seems 
that being exposed to the subsidized work experience increased earnings in 1978 by 
$1,068 (Fig. 4.1). However, the 95% confidence interval is large enough that the 
relative estimate is not statistically different from 0. Remember that in this lucky 
case, we know from the NSWD experimental result that being exposed to the treat-
ment increased earnings in 1978 by $1,794 with a 95% confidence interval of [551; 
3,038]. Thus, the OLS estimate on the raw data is substantially lower than the 
benchmark effect established on the experimental data.

Thus, the authors preprocess the raw data using EB. The basic syntax of the com-
mand ebalance requires the researcher to list the treatment variable (treat) and the 

F. Negri



87

Fig. 4.1  OLS regression on the raw data

pretreatment covariates he/she will focus on (e.g., age, educ, black, and hispan). 
The most important option in ebalance is targets(numlist) as it allows the researcher 
to impose the balance constraints for the included covariates. In detail, the researcher 
has to specify a number (1, 2, or 3) that corresponds to the highest covariate moment 
that should be adjusted for each covariate.

For example, this code requests that the mean, variance, and skewness of the 
variables age, educ, black, and hispan are adjusted: ebalance treat age educ black 
hispan, targets (3).

As shown in Fig. 4.2, the command returns the number of treated and control 
units. Note that EB does not discard treated units (185), thus keeping the original 
estimand. Then, it reports descriptive statistics on the mean, variance, and skewness 
of the selected covariates in the treatment and in the control groups, before and after 
the reweighting procedure. As requested, the algorithm perfectly balances the two 
groups on first-, second-, and third-order moments by fitting the EB weights. By 
default, the EB weights are stored in a variable named _webal and can be readily 
used for subsequent analysis.

By writing 2 instead of 3 in parentheses, the algorithm would have balanced only 
the mean and variance of the same variables; by writing 1, it would have balanced 
only the mean of the same variables. The command also allows to specify specific 
constraints to each variable (see Fig. 4.3). For example, according to the command:

ebalance will adjust the first moment for age and educ, the first and the second 
moments for black and the first, second, and third moments for hispan.

To reweight the original LaLonde (1986) data set, Heinmueller and Xu (2013) 
adjust the sample by including the means, variances, and skewness of all of the 10 
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Fig. 4.2  The output of the ebalance command

Fig. 4.3  Options of the ebalance command

pretreatment covariates plus squared terms and first-order interactions of the same 
10 covariates and cubed terms for age, educ, re74, and re75.

By running the initial OLS regression on the reweighted data, the treatment 
effect estimate suggests that being exposed to the subsidized work experience 
increased earnings in 1978 by $1,761 with a 95% confidence interval of [333; 
3,190]. Thus, the simple OLS estimate on the reweighted data is very close to the 
experimental target answer ($1,794 with a 95% confidence interval of [551; 3,038]). 
A similar conclusion may be achieved by regressing re78 on treat only (Fig. 4.4).

4.4.2 � Coarsened Exact Matching

All the matching procedures based on the propensity score (see Table 4.1) assume 
that the data generation process is based on simple random sampling, which means 
that drawing repeated hypothetical samples of fixed size n < ∞at random from a 
population of θ units with covariates X, each sample of n observations has an equal 
probability of selection.
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Fig. 4.4  OLS regression on the reweighted data

CEM modifies this assumption by theorizing that the data generation process 
guarantees stratified random sampling. Informally, the adjective “stratified” means 
that random sampling does not apply directly to the population of θ units, but to 
strata or partitions, within this population, that are identified by the researcher 
according to his/her knowledge of the set of covariates X. For example, if the set of 
covariates X includes age, gender, and earnings, a stratum may refer to young males 
making more than $25,000. Inside this stratum, sample selection should be random 
(Iacus et al., 2019: 48–49). Then, as with all the other matching procedures, CEM is 
grounded on the selection on observables and on the common support assumptions 
(even if inside each stratum; see Iacus et al., 2019: 50–51).

As the reader may have already realized, the emphasis is on the definition of 
strata by the researcher. The authors underline that this step is case specific and criti-
cally reflects “the knowledge the investigator must have” (Iacus et al., 2019: 54). 
Indeed, the CEM algorithm helps the researcher in coarsening each variable among 
the set of pretreatment covariates judged as relevant into substantively meaningful 
categories that reduce variability while at the same time preserving information. 
The easiest example is the variable reporting the years of education that can be eas-
ily coarsened into categories such as high school, some college, college gradu-
ates, etc.

Starting from the LaLonde’s data set (1986), Iacus et  al. (2009, 2011, 2012, 
2019) show that CEM, on average, dominates commonly used matching procedures 
in a large variety of real and simulated data sets because it reduces imbalance, model 
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dependence, estimation error, bias, variance, and mean square error. Moreover, it 
usually produces more matched units. Furthermore, while to improve propensity 
score matching, the researcher has to marginally change and rerun the model, 
recheck imbalance, and rerun the model again several times (King & Nielsen, 2019), 
and CEM makes it easier to find a specification that improves balance. Indeed, strata 
are explicitly defined ex ante by the researcher according to his/her substantive 
knowledge on the covariates: reducing maximum imbalance on one variable never 
has any effect on the maximum imbalance specified for any of the other variables 
(Iacus et  al., 2012: 21). Let us apply this algorithm to the subset of the original 
LaLonde data set (1986) already used by Dehejia and Wahba (1999). For an appli-
cation on the original experimental LaLonde’s data set, see Blackwell et al. (2009).

First, we have to assess the imbalance in the original unmatched data through the 
λ1 statistic (Iacus et al., 2008). This statistic ranges from 0, meaning perfect global 
balance between the treatment and the control groups, to 1, meaning complete sepa-
ration between the two (Fig. 4.5).

The imb (meaning “imbalance”) command works as follows. The researcher has 
to list the pretreatment covariates they want to focus on (in the example, age, educ, 
black, and hispan), followed by the indication of the treatment variable (treat). First, 
the Stata output shows the λ1 statistic. In our example, λ1 = 0.893, thus signaling that 
the original unmatched data are highly unbalanced. Note that the λ1 value is not 
valuable on its own: it is as a point of comparison between matching solutions. The 
value 0.893 is a baseline reference for the unmatched data. The researcher has to 
compare the λ1 value obtained on the matched data to the value 0.893 obtained on 
the unmatched data and verify whether there has been an increase in balance due to 
the matching solution (Blackwell et al., 2009: 531).

Then, the output shows additional unidimensional measures of imbalance. The 
first column, labelled L1, reports the statistics λ1 computed for each variable sepa-
rately. The second column, mean, reports the difference in means between the treat-
ment and control groups. The remaining columns report the difference in the 
empirical quantiles of the distributions of the two groups for the 0th, 25th, 50th, 75th, 
and 100th percentiles for each variable (Fig. 4.6).

Fig. 4.5  The output of the imb command
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Fig. 4.6  The output of the cem command

Having obtained our baseline reference λ1 value for the unmatched data, we 
apply the CEM algorithm by calling the cem command. Crudely put, CEM (1) 
begins with the covariates X and makes a copy X∗, (2) coarsens X∗ according to user-
defined cut-points (or CEM’s automatic binning algorithm), (3) creates one stratum 
per unique observation of X∗ and places each observation in a stratum, and (4) 
assigns these strata to the original data, X, and drops any observation whose stratum 
does not contain at least one treated and one control unit. Note that (4) may drop 
both treated and control units, thus changing the estimand. However, it does it trans-
parently. Obviously, fewer strata will result in more heterogeneous observations 
within the same stratum and thus higher imbalance and vice versa (Blackwell et al., 
2009: 527).

According to this basic coding, cem performs an automated coarsening. The out-
put provides a small table reporting the number of observations in total (All), 
matched and unmatched by treatment group. Notably, two treated observations have 
been discarded because there were no good matches (thus, the estimand is changed).

Then, the output provides information about the imbalance in the matched data. 
The imbalance in the preprocessed data set is equal to 0.343, which means that the 
common ground between treated and control units is equal to 66%. Since our base-
line reference λ1 value for the unmatched data is 0.893, this matching solution 
increases the balance between the two groups. Note that cem also generates weights 
(stored in cem weights) for use in the subsequent analysis (Fig. 4.7).

As anticipated, the added value of cem is that it allows the researcher to set the 
coarsening for each variable such that substantively indistinguishable values are 
grouped together. For example, the code below asks cem to match all binary 
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Fig. 4.7  The output of the cem command with specific coarsening

Fig. 4.8  OLS regression with cem weights

variables and education exactly and age according to standard labor force classes 
(i.e. 15–19, 20–24, 25–34, 35 and over).

This matching solution differs from that resulting from the automated approach: 
the balance is worse (from 0.343 in the automated preprocessed data set to 0.431 in 
the data set preprocessed according to user choices), but all the treated units have 
been matched. Since we have not achieved a perfect balance between treatment and 
control groups, it a good idea to adjust for the remaining imbalance via a statistical 
model. This can be done by taking advantage of the cem weights (Fig. 4.8).
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By running the initial OLS regression on the reweighted data, the treatment 
effect estimate suggests that being exposed to the subsidized work experience 
increased earnings in 1978 by $1,499 with a 95% confidence interval of [571; 
2,428]. Thus, the OLS estimate on the cem reweighted data is quite close to the 
experimental target answer ($1,794 with a 95% confidence interval of [551; 3,038]).

4.5 � Conclusion

This chapter discussed the necessary assumptions for statistical correlation to jus-
tify a causal interpretation when, as is usually the case in practice, controlled ran-
domization is unfeasible or politically sensitive and there are no convincing natural 
experiments providing a substitute for randomization.

First, the chapter recognized that in observational studies, causal inference is 
always hazardous due to the strong assumption of selection on observables, which 
is not easily testable by looking at the raw data (see Oster, 2019 on evaluating 
OLS robustness to the omitted variable bias). The chapter clarified that, ultimately, 
the reliability of the estimates obtained by preprocessing the raw data depends on 
the validity of the selection on observables assumption, which should be discussed 
on a case-by-case basis by the researcher. Simply put, once you have identified a 
set of covariates Xi, you should ask yourself whether there are additional unob-
servable variables capable of pushing units into treatment. If the answer is “No,” 
then the assumption of selection on observables is theoretically met and matching 
and weighting procedures may credibly help you in finding out causal 
relationships.

Second, the chapter endorsed the practice of preprocessing the raw data through 
weighting and matching techniques in order to generate well-balanced samples and 
then applying the same familiar methods of estimation the researcher would have 
used anyway on the original data set, without preprocessing. In fact, even if these 
implementation steps do not overcome the selection on observables assumption (i.e. 
even if your answer to the previous question is “Yes”), weighting and matching 
techniques will reduce model dependence for the subsequent estimation of the treat-
ment effect via parametric analysis. This means that effect estimates become far less 
sensitive to seemingly arbitrary choices in model specification: if the treatment and 
control groups are well balanced, slightly different model specifications are less 
likely to alter the substantial empirical conclusion of the analysis. Thus, preprocess-
ing the raw data through weighting and matching techniques to generate well-
balanced samples is strongly suggested. In this regard, remember that CEM may 
discard treated units, while EB leaves the estimand unchanged. Even if dropping 
unmatched treated units can be beneficial (Iacus et al., 2009), also this choice should 
be openly discussed on a case-by-case basis by the researcher: for example, drop-
ping a treated respondent in a survey may be easier to justify than dropping an entire 
geographical region.
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The hands-on section provided practical guidance for the implementation of the 
EB and CEM algorithms, respectively. This exercise was performed on the well-
known LaLonde (1986) data set, a lucky case in which we know the “true” average 
treatment effect from an RCT and we have to match or weight the observations and 
to adjust the model specification so that the estimation becomes as close as possible 
to the experimental result (see also Costalli & Negri, 2021 for the application of 
CEM to the evaluation of the effectiveness of peacekeeping missions in the Bosnian 
civil war).

This is not what usually happens in practice. Since researchers do not know the 
“true” average treatment effect, they face several decisions during the implementa-
tion of the statistical analysis, and there are not always rules of thumb to be applied. 
The most desirable feature of the implementation steps suggested here is that they 
force researchers to take the assumptions that have to be met out of the shadows and 
make them explicit before looking at the outcomes.

Several things may go wrong. For example, researchers may miss a higher 
dimensional aspect of imbalance when checking lower dimensional summaries. 
This may affect the estimates. However, since this may also happen without prepro-
cessing, following the steps suggested here should at least not make things worse. 
Moreover, when the preprocessing implies the loss of some treated unit, researchers 
should openly discuss the consequences in terms of external validity.

Lastly, as with the techniques covered in Chaps. 3 and 5, the research design 
discussed here are suitable for establishing a causal relationship between a given 
variable of interest, the treatment, and an outcome variable, while controlling for 
confounders. The implementation steps described here are not designed to investi-
gate the paths linking a factor of interest to the outcome (see Chap. 6), to identify 
the full set of conditions under which the positive outcome is observed (see Chap. 
7) or the mechanisms (see Chap. 8) behind the uncovered effects. While recognizing 
these limitations, these implementation steps help researchers in evaluating whether 
they are meeting the necessary conditions for generating valid inferences in their 
applications or how far they go. Good luck with your applied research.

Review Questions
	1.	 Discuss the reasons why statistical association is not a sufficient, but still a nec-

essary, condition to make a causal claim.
	2.	 Formalize the causal inference identification problem through the lens of the 

potential outcomes framework and discuss it.
	3.	 Do matching procedures overcome the inferential problems related to the selec-

tion on observables assumption?
	4.	 What are the differences between exact and approximate matching procedures? 

List the aforementioned four approximate matching procedures based on the 
propensity score and describe two of them.

	5.	 Why can the propensity score solution to the curse of dimensionality be seen as 
a tautology?

	6.	 Once treated units have been matched to control units according to one among 
the available matching algorithms, is it correct to estimate the causal effect 
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through a simple difference in means between the observed outcomes of the 
treatment and control groups?

	7.	 Compare EB and CEM preprocessing techniques by highlighting how they, 
respectively, address the propensity score tautology.

	8.	 Define the following keywords:

•	 Confirmation bias
•	 Selection on observables
•	 Model dependence
•	 Common support
•	 Propensity score
•	 Balance

Replication Material
•	 Data and replication materials for Section 4.4 are available at https://github.com/

FedraNegri/CorrelationIsNotCausationYet-.git
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Chapter 5
Getting the Most Out of Surveys: 
Multilevel Regression 
and Poststratification

Joseph T. Ornstein

Abstract  Good causal inference requires good measurement; even the most 
thoughtfully designed research can be derailed by noisy data. Because policy schol-
ars are often interested in public opinion as a key dependent or independent vari-
able, paying careful attention to the sources of measurement error from surveys is 
an essential step toward detecting causation. This chapter introduces multilevel 
regression and poststratification (MRP), a method for adjusting public opinion esti-
mates to account for observed imbalances between the survey sample and popula-
tion of interest. It covers the history of MRP, recent advances, an example analysis 
with code, and concludes with a discussion of best practices and limitations of the 
approach.

Learning Objectives
By the end of this chapter, you will be able to:

•	 Explain the motivation for MRP and the circumstances under which it is appro-
priate to implement.

•	 Describe the two steps in producing MRP estimates: model fitting and 
postsratification.

•	 Generate MRP estimates by adapting the provided sample code.
•	 Implement more sophisticated variants of MRP, including stacked regression and 

postratification (SRP) or multilevel regression and synthetic poststratification 
(MrsP) where appropriate.
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5.1 � Introduction

The book you are reading is a testament to the “credibility revolution” in the social 
sciences (Angrist & Pischke, 2010), a wide-ranging effort spanning multiple disci-
plines to develop credible, design-based approaches to causal inference. It is diffi-
cult to overstate the influence this revolution has had on empirical social science, 
and the increasing emphasis that policymakers place on informing policy with good 
research design is a welcome trend.

But as the ongoing replication crisis in experimental psychology (Button et al., 
2013) has made clear, good research design alone is insufficient to yield good sci-
ence. After all, double-blind randomized control trials are the “gold standard” of 
credible causal inference, but small sample sizes and noisy measurement have cre-
ated a situation where many published effect estimates fail to replicate upon further 
scrutiny (Loken & Gelman, 2017). To confidently detect causation, one needs both 
good research design and good measurement.

Often policy researchers are interested in public opinion on some issue, either as 
an independent or dependent variable. But the surveys we use to measure public 
opinion are frequently unrepresentative in some important way. Perhaps their 
respondents come from a convenience sample (Wang et al., 2015), or non-response 
bias skews an otherwise random sample. Or perhaps the data is representative of 
some larger population (i.e., a country-level random sample) but contains too few 
observations to make inferences about a subgroup of interest. Even the largest US 
public opinion surveys do not have enough respondents to make reliable inferences 
about lower-level political entities like states or municipalities. Conclusions drawn 
from low frequency observations – even in a large sample survey – can be wildly 
misleading (Ansolabehere et al., 2015).

This presents a challenge for researchers: how to take unrepresentative survey 
data and adjust it so that it is useful for our particular research question. In this 
chapter, I will demonstrate a method called  Multilevel Regression and 
Poststratification (MRP). Using this approach, the researcher first constructs a 
model of public opinion (multilevel regression) and then reweights the model’s pre-
dictions based on the observed characteristics of the population of interest (post-
stratification). In the sections that follow, I will describe this approach in detail, 
accompanied by replication code in the R statistical language.

As we will see, the accuracy of our MRP estimates depends critically on whether 
the first-stage model makes good out-of-sample predictions. The best first-stage 
models are regularized (Gelman, 2018) to avoid both over- and underfitting to the 
survey data. Regularized ensemble models (Ornstein, 2020) with group-level pre-
dictors tend to produce the best estimates, especially when trained on large survey 
datasets.

J. T. Ornstein
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5.2 � How It Works

MRP was first introduced by Gelman and Little (1997), and in the subsequent 
decades, it has helped address a diverse set of research questions in political science. 
These range from generating election forecasts using unrepresentative survey data 
(Wang et al., 2015) to assessing the responsiveness of state (Lax & Phillips, 2012) 
and local policymakers (Tausanovitch & Warshaw, 2014) to their constituents’ pol-
icy preferences.

To demonstrate how the method works, the next section will introduce a running 
example drawn from the Cooperative Election Study (Schaffner et  al., 2021), a 
50,000+ respondent study of voters in the United States. The 2020 wave of the study 
includes a question asking respondents whether they support a policy that would 
“decrease the number of police on the street by 10 percent, and increase funding for 
other public services.” Since police reform is a policy issue on which US local gov-
ernments have a significant amount of autonomy, it would be useful to know how 
opinions on this issue vary from place to place without having to conduct separate, 
costly surveys in each area.

The problem is that even a survey as large as CES has relatively few respondents 
in some small areas of interest. If we wanted to know, for example, what voters in 
Detroit thought about police reform, a survey of 50,000 people randomly sampled 
from across the United States will have, on average, only 100 people from Detroit. 
Estimates from such a small sample will not be very precise. And more importantly, 
those 100 people are unlikely to be representative of the population of Detroit, since 
the survey was designed to be representative of the country at large.

The core insight of the MRP approach is that we can use similar respondents 
from similar areas – e.g., Cleveland or Chicago or Pittsburgh – to improve our infer-
ences about public opinion in Detroit. The way we do so is to first fit a statistical 
model of public opinion, using both individual-level predictors (e.g., race, age, gen-
der, education) and group-level predictors (e.g., median income, population den-
sity) from our survey dataset. Then, we reweight the predictions of the model to 
match the observed demographics and characteristics of Detroit. In this way, we get 
the most out of the information contained in our survey and produce a better esti-
mate of what Detroit residents think than our small sample from Detroit alone could 
produce.

5.3 � Running Example

To help demonstrate this process, we will draw a small random sample from the 
CES survey, and, using that sample alone, attempt to estimate state-level public 
opinion on police reform in each US state. In this way, we can evaluate the accuracy 
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of our MRP estimates and explore how various refinements to the method improve 
predictive accuracy. This approach mirrors Buttice and Highton (2013), who use 
disaggregated responses from large-scale US survey of voters as their target esti-
mand to evaluate MRP’s performance. The Cooperative Election Study data is 
available here, and we’ll be using a tidied version of the dataset created by the R/
cleanup-ces-2020.R script.1

library(tidyverse)

library(ggrepel)

load('data/CES-2020.RData')
 

This tidied version of the data only includes the 33 states with at least 500 
respondents. First, let’s plot the percent of CES respondents who supported “defund-
ing” the police2 by state.

truth <- ces %>%

group_by(abb) %>%

summarize(truth = mean(defund_police))

truth %>%

mutate(abb = fct_reorder(abb, truth)) %>%

ggplot(mapping = aes(x=truth, y=abb)) +

geom_point(alpha = 0.7) +

labs(x = 'Percent Who Support Police Reform Policy',

y = 'State') +

theme_minimal()
 

Oregon is the only state where a majority of respondents supported this policy 
proposal. And note that Fig. 5.1 likely overstates the percent of the total population 
that support such a policy, since self-identified Democrats are overrepresented in 
the CES sample. But nevertheless, these population-level parameters will be a use-
ful target to evaluate the performance of our MRP estimates.

1 All replication code and data is available on a public repository (https://github.com/joeornstein/
mrp-chapter). Throughout, I will use R functions from the “tidyverse” (Wickham et al., 2019) to 
make the code more human readable.
2 Obviously that phrase means different things to different people. In this case, we’ll stick with the 
CES proposed policy of reducing police staffing by 10% and diverting those expenditures to other 
priorities.
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Fig. 5.1  The percent of CES respondents in each state who support reducing police budgets. 
These are our target estimands

5.3.1 � Draw a Sample

Suppose that we did not have access to the entire CES dataset, but only to a random 
sample of 1,000 respondents. How good of a job can we do at estimating those state-
level means?
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5.3.1. Draw a Sample
sample_data <- ces %>%

slice_sample(n = 1000)

sample_summary <- sample_data %>%

group_by(abb) %>%

summarize(estimate = mean(defund_police),

num = n())

sample_summary

## # A tibble: 33 x 3

##    abb   estimate   num

##    <chr>    <dbl> <int>

##  1 AL       0.55     20

##  2 AR       0         4

##  3 AZ       0.438    16

##  4 CA       0.435    85

##  5 CO       0.478    23

##  6 CT       0.375     8

## 7 FL       0.402    87

##  8 GA       0.346    26

##  9 IA       0.308    13

## 10 IL       0.28     50

## # ... with 23 more rows
 

In a sample with only 1,000 respondents, there are several states with very few 
(or no) respondents. Notice, for example, that this sample includes only four respon-
dents from Arkansas, of whom zero support reducing police budgets. Simply disag-
gregating and taking sample means is unlikely to yield good estimates, as you can 
see by comparing those sample means against the truth (Fig. 5.2).

J. T. Ornstein
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Fig. 5.2  Estimates from disaggregated sample data

# a function to plot the state-level estimates against the truth

compare_to_truth <- function(estimates, truth){

d <- left_join(estimates, truth, by = 'abb')

ggplot(data = d,

mapping = aes(x=estimate,

y=truth,

label=abb)) +

geom_point(alpha = 0.5) +

geom_text_repel() +

theme_minimal() +

geom_abline(intercept = 0, slope = 1, linetype = 'dashed') +

labs(x = 'Estimate',

y = 'Truth',

caption = paste0('Correlation = ', round(cor(d$estimate, d$truth), 2), 

', Mean Absolute Error = ', round(mean(abs(d$estimate - d$

truth)), 3)))

}

compare_to_truth(sample_summary, truth)
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These are clearly poor estimates of state-level public opinion. The four respon-
dents from Arksansas simply do not give us enough information to adequately mea-
sure public opinion in that state. But one of the key insights behind MRP is that the 
respondents from Arkansas are not the only respondents who can give us informa-
tion about Arkansas! There are other respondents in, for example, Missouri, that are 
similar to Arkansas residents on their observed characteristics. If we can determine 
the characteristics that predict support for police reform using the entire survey 
sample, then we can use those predictions – combined with demographic informa-
tion about Arkansans – to generate better estimates. The trick, in essence, is that our 
estimate for Arkansas will be borrowing information from similar respondents in 
other states.

The method proceeds in three steps.

5.3.1.1 � Step 1: Fit a Model

First, we fit a model of our outcome, using observed characteristics of the survey 
respondents as predictors. To demonstrate, let’s fit a simple logistic regression 
model including only four demographic predictors: gender, education, race, and age.

model <- glm(defund_police ~

gender + educ + race + age,

data = sample_data,

family = 'binomial')
 

5.3.1.2 � Step 2: Construct the Poststratification Frame

The poststratification stage requires the researcher to know (or estimate) the joint 
frequency distribution of predictor variables in each state. This information is stored 
in a “poststratification frame,” a matrix where each row is a unique combination of 
characteristics, along with the observed frequency of that combination. Often, one 
constructs this frequency distribution from Census micro-data (Lax & Phillips, 
2009). For our demonstration, I will compute it directly from the CES.

J. T. Ornstein
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psframe <- ces %>%

count(abb, gender, educ, race, age)

head(psframe)

## # A tibble: 6 x 6

##   abb   gender educ   race    age     n

##   <chr> <chr>  <chr>  <chr> <dbl> <int>

## 1 AL    Female 2_year Black    26     1

## 2 AL    Female 2_year Black    27     2

## 3 AL    Female 2_year Black    29     1

## 4 AL    Female 2_year Black    31     1

## 5 AL    Female 2_year Black    34     2

## 6 AL    Female 2_year Black    35     2
 

5.3.1.3 � Step 3: Predict and Poststratify

With the model and poststratification frame in hand, the final step is to generate 
frequency-weighted predictions of public opinion. For each cell in the poststratifica-
tion frame, append the model’s predicted probability of supporting police defunding.

psframe$predicted_probability <- predict(model, psframe, type = 'response')
 

Then, the poststratified estimates are the frequency-weighted means of those 
predictions.

poststratified_estimates <- psframe %>%

group_by(abb) %>%

summarize(estimate = weighted.mean(predicted_probability, n))
 

Let’s see how these estimates compare with the known values (Fig. 5.3).

compare_to_truth(poststratified_estimates, truth)
 

These estimates, though still imperfectly correlated with the truth, are much bet-
ter than the previous estimates from disaggregation. Notice, in particular, that the 
estimate for Arkansas went from 0% to roughly 39%, reflecting the significant 
improvement that comes from using more information than the four Arkansans in 
our sample can provide.
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Fig. 5.3  Underfit MRP estimates from complete pooling model

But we can still do better. In the following sections, I will show how successive 
improvements to the first-stage model can yield more reliable poststratified 
estimates.

5.3.2 � Beware Overfitting

A common instinct among social scientists building models is to take a “kitchen 
sink” approach, including as many explanatory variables as possible (Achen, 2005). 
This is counterproductive when the objective is out-of-sample predictive accuracy. 
To illustrate, let’s estimate a model with a separate intercept term for each state – a 
“fixed effects” model. Because our sample contains several states with very few 
observations, these state-specific intercepts will be overfit to sampling variability 
(Fig. 5.4).
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Fig. 5.4  Overfit MRP estimates from fixed effects model

# fit the model

model2 <- glm(defund_police ~

gender + educ + race + age +

abb,

data = sample_data,

family = 'binomial')

# construct the poststratification frame

psframe <- ces %>%

count(abb, gender, educ, race, age)

# make predictions

psframe$predicted_probability <- predict(model2, psframe, type = 'response')

# poststratify

poststratified_estimates <- psframe %>%

group_by(abb) %>%

summarize(estimate = weighted.mean(predicted_probability, n))

compare_to_truth(poststratified_estimates, truth)
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These poststratified estimates perform about as well as the disaggregated esti-
mates from Fig. 5.2. Because each state’s intercept is estimated separately, the over-
fit model foregoes the advantages of “partial pooling” (Park et al., 2004), borrowing 
information from respondents in other states. Note that the estimate for Arkansas is 
once again 0%.

5.3.3 � Partial Pooling

A better approach is to estimate a multilevel model (alternatively known as “varying 
intercepts” or “random effects” model), including group-level covariates. In the 
model below, I estimate varying intercepts by US Census division, including the 
state’s 2020 Democratic vote share as a covariate. The result is a marked improve-
ment over Fig. 5.3 (particularly for West Coast states like Oregon, Washington, and 
California) (Fig. 5.5).

Fig. 5.5  MRP estimates from model with partial pooling
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library(lme4)

# fit the model

model3 <- glmer(defund_police ~ gender + educ + race + age +

(1 + biden_vote_share | division), 

data = sample_data,

family = 'binomial')

# construct the poststratification frame

psframe <- ces %>%

count(abb, gender, educ, race, age, division, biden_vote_share)

# make predictions

psframe$predicted_probability <- predict(model3, psframe, type = 'response')

# poststratify

poststratified_estimates <- psframe %>%

group_by(abb) %>%

summarize(estimate = weighted.mean(predicted_probability, n))

compare_to_truth(poststratified_estimates, truth)
 

5.3.4 � Sample Size Is Critical

MRP’s performance depends heavily on the quality and size of the researcher’s 
survey sample. Up to now, we’ve been working with a random sample of 1,000 
respondents, and though the resulting estimates are better than the raw sample 
means, their performance has been somewhat underwhelming. Suppose instead we 
had a sample of 5,000 respondents (Fig. 5.6).
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sample_data <- ces %>%

slice_sample(n = 5000)

# fit the model

model3 <- glmer(defund_police ~ gender + educ + race + age +

(1 + biden_vote_share | division), 

data = sample_data,

family = 'binomial')

# construct the poststratification frame

psframe <- ces %>%

count(abb, gender, educ, race, age, division, biden_vote_share)

# make predictions

psframe$predicted_probability <- predict(model3, psframe, type = 'response')

# poststratify

poststratified_estimates <- psframe %>%

group_by(abb) %>%

summarize(estimate = weighted.mean(predicted_probability, n))

compare_to_truth(poststratified_estimates, truth)
 

Fig. 5.6  Poststratified estimates with a survey sample of 5,000
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Now MRP really shines. With more observations, the first-stage model can better 
predict opinions of out-of-sample respondents, which dramatically improves the 
poststratified estimates.

5.3.5 � Stacked Regression and Poststratification (SRP)

Ultimately, the accuracy of one’s poststratified estimates depends on the out-of-
sample predictive performance of the first-stage model. As we’ve seen above, the 
challenge is to thread the needle between overfitting and underfitting. Several recent 
papers (Bisbee, 2019; Broniecki et  al., 2022; Ornstein, 2020) have shown that 
approaches from machine learning can help to automate this process, particularly 
with large survey samples.

In the code below, I’ll demonstrate how an ensemble of models – using the same 
set of predictors but different methods for combining them into predictions – can 
yield superior performance to a single multilevel regression model. In particular, I 
will fit a “stacked regression” (Breiman, 1996), which makes predictions based on 
a weighted average of multiple models, where the weights are assigned by cross-
validated prediction performance (van der Laan et  al., 2007). The literature on 
ensemble models is extensive, but for good entry points, I recommend Breiman 
(1996), Breiman (2001), and Montgomery et al. (2012) (Fig. 5.7).

Fig. 5.7  Estimates from an ensemble first-stage model
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# construct the poststratification frame

psframe <- ces %>%

count(abb, gender, educ, race, age, division, biden_vote_share)

# fit the model (an ensemble of random forest and logistic regression)

library(SuperLearner)

SL.library <- c("SL.ranger", "SL.glm")

X <- sample_data %>%

select(gender, educ, race, age, division, biden_vote_share)

newX <- psframe %>%

select(gender, educ, race, age, division, biden_vote_share)

sl <- SuperLearner(Y = sample_data$defund_police,

X = X, 

newX = newX, 

family = binomial(),

SL.library = SL.library, verbose = FALSE)

# make predictions

psframe$predicted_probability <- sl$SL.predict

# poststratify

poststratified_estimates <- psframe %>%

group_by(abb) %>%

summarize(estimate = weighted.mean(predicted_probability, n))

compare_to_truth(poststratified_estimates, truth)
 

The performance gains in Fig. 5.7 reflect the improvement that comes from mod-
eling “deep interactions” in the predictors of public opinion (Ghitza & Gelman, 
2013). If, for example, income better predicts partisanship in some states but not in 
others (Gelman et al., 2007), then a model that captures that moderating effect will 
produce better poststratified estimates than one that does not. Machine learning 
techniques like random forest (Breiman, 2001) are especially useful for automati-
cally detecting and representing such deep interactions, and stacked regression and 
poststratification (SRP) tends to outperform MRP in simulations, particularly for 
training data with large sample size (Ornstein, 2020).
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5.3.6 � Synthetic Poststratification

Researchers rarely have access to the entire joint distribution of individual-level 
covariates. This can be limiting, since there may be a variable that one would like to 
include in the first-stage model but cannot because it is not in the poststratification 
frame. Leemann and Wasserfallen (2017) suggest an extension of MRP, which they 
(delightfully) dub Multilevel regression and synthetic Poststratification’ (MrsP). 
Lacking the full joint distribution of covariates for poststratification, one can instead 
create a synthetic poststratification frame by assuming that additional covariates are 
statistically independent of one another. So long as the first-stage model is linear 
additive, this approach yields the same predictions as if you knew the true joint 
distribution!3 And even if the first-stage model is not linear additive, simulations 
suggest that the improved performance from additional predictors tends to over-
come the error introduced in the poststratification stage.

Here are some CES covariates that we might want to include in our model of 
police reform:

•	 How important is religion to the respondent?
•	 Whether the respondent lives in an urban, rural, or suburban area.
•	 Whether the respondent or a member of the respondent’s family is a military 

veteran.
•	 Whether the respondent owns or rents their home.
•	 Is the respondent the parent or guardian of a child under the age of 18?

These variables are likely to be useful predictors of opinion about police reform, 
and the first-stage model could be improved by including them. But there is no 
dataset (that I know of) that would allow us to compute a state-level joint probability 
distribution over every one of them. Instead, we would typically only know the 
marginal distributions of each covariate (e.g., the percent of a state’s residents that 
are military households or the percent that live in urban areas). So a synthetic post-
stratification approach may prove helpful.

To create a synthetic poststratification frame, we create a set of marginal proba-
bility distributions and multiply them together.4

3 See Ornstein (2020) Appendix A for mathematical proof.
4 The SRP package contains a convenience function for this operation (see the vignette for more 
information).
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# fit the model

model4 <- glmer(defund_police ~ gender + educ + race + age +

pew_religimp + homeowner + urban +

parent + military_household +

(1 + biden_vote_share | division),

data = sample_data,

family = 'binomial')

# construct the poststratification frame

psframe <- ces %>%

count(abb, gender, educ, race, age, 

division, biden_vote_share) %>%

# convert frequencies to probabilities

group_by(abb) %>%

mutate(prob = n/sum(n))

# find the marginal distribution for each new variable

marginal_pew_religimp <- ces %>%

count(abb, pew_religimp) %>%

group_by(abb) %>%

mutate(marginal_pew_religimp = n/sum(n))

marginal_urban <- ces %>%

count(abb, urban) %>%

group_by(abb) %>%

mutate(marginal_urban = n/sum(n))

marginal_parent <- ces %>%

count(abb, parent) %>%

group_by(abb) %>%

mutate(marginal_parent = n/sum(n))

marginal_military_household <- ces %>%

count(abb, military_household) %>%

group_by(abb) %>%

mutate(marginal_military_household = n/sum(n))

marginal_homeowner <- ces %>%

count(abb, homeowner) %>%

group_by(abb) %>%

mutate(marginal_homeowner = n/sum(n))
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# merge the marginal distributions together

synthetic_psframe <- psframe %>%

left_join(marginal_pew_religimp, by = 'abb') %>%

left_join(marginal_homeowner, by = 'abb') %>%

left_join(marginal_urban, by = 'abb') %>%

left_join(marginal_parent, by = 'abb') %>%

left_join(marginal_military_household, by = 'abb') %>%

# and multiply

mutate(prob = prob * marginal_pew_religimp *

marginal_homeowner * marginal_urban *

marginal_parent * marginal_military_household)
 

Then, poststratify as normal using the synthetic poststratification frame (Fig. 5.8).

Fig. 5.8  Estimates from synthetic poststratification, including additional covariates
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# make predictions

synthetic_psframe$predicted_probability <- predict(model4, synthetic_psframe, 

type = 'response')

# poststratify

poststratified_estimates <- synthetic_psframe %>%

group_by(abb) %>%

# (note that we're weighting by prob instead of n here)

summarize(estimate = weighted.mean(predicted_probability, prob))

compare_to_truth(poststratified_estimates, truth)
 

5.3.7 � Best Performing

As a final demonstration, suppose we had access to the entire joint distribution over 
those covariates, and our first-stage model was a Super Learner ensemble. This 
combination yields the best-performing estimates yet (Fig. 5.9).

Fig. 5.9  The best performing estimates, using a large survey sample, ensemble first-stage model, 
and full set of predictors
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# construct the poststratification frame

psframe <- ces %>%

count(abb, gender, race, age, educ,

division, biden_vote_share,

pew_religimp, homeowner, urban, 

parent, military_household)

# fit Super Learner

SL.library <- c("SL.ranger", "SL.glm")

X <- sample_data %>%

select(gender, race, age, educ,

division, biden_vote_share,

pew_religimp, homeowner, urban, 

parent, military_household)

newX <- psframe %>%

select(gender, race, age, educ,

division, biden_vote_share,

pew_religimp, homeowner, urban, 

parent, military_household)

sl <- SuperLearner(Y = sample_data$defund_police,

X = X, 

newX = newX, 

family = binomial(),

SL.library = SL.library, 

verbose = FALSE)

# make predictions

psframe$predicted_probability <- sl$SL.predict

# poststratify

poststratified_estimates <- psframe %>%

group_by(abb) %>%

summarize(estimate = weighted.mean(predicted_probability, n))

compare_to_truth(poststratified_estimates, truth)
 

The results shown in Fig.  5.9 reflect all the gains from a larger sample size, 
ensemble modeling, and a full set of individual-level and group-level predictors.
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5.4 � Conclusion

For policy researchers interested in public opinion, MRP and its various refinements 
offer a useful approach to get the most out of survey data. The results I’ve presented 
in this chapter suggest a few lessons to keep in mind when applying MRP to one’s 
own research.

First, be wary of first-stage models that are underfit or overfit to the survey data. 
As we saw in Fig. 5.3, MRP estimates with too few predictors tend to over-shrink 
toward the grand mean.5 Using such estimates to inform subsequent causal infer-
ence would understate the differences between regions. Conversely, models that are 
overfit to survey data (e.g., Fig. 5.4) will tend to exaggerate regional differences.

Second, new techniques like synthetic poststratification and stacked regression 
can help researchers manage the trade-off between underfitting and overfitting. 
Synthetic poststratification allows for the inclusion of more relevant predictors, and 
regularized ensemble models help ensure that the predictions are not overfit to noisy 
survey samples. The best estimates often come from combining these two 
approaches.

Finally, recall that the most significant performance gains in our demonstration 
came not from more sophisticated modeling techniques, but from more data. As we 
saw in Fig. 5.6, working with a larger survey yielded greater improvements than any 
tinkering around with the first-stage modeling choices. MRP is not a panacea, and 
one should be skeptical of estimates produced from small-sample surveys, regard-
less of how they are operationalized.

In the code above, I emphasize “do-it-yourself” approaches to MRP – fitting a 
model, building a poststratification frame, and producing estimates separately. But 
there are a now number of R packages available with useful functions to help ease 
the process. In particular, I would encourage curious readers to explore the autoMrP 
package (Broniecki et  al., 2022), which implements the ensemble modeling 
approach described above and performs quite well in simulations when compared to 
existing packages.

Further Suggested Readings
•	 McElreath, Richard. 2020. Statistical Rethinking: A Bayesian Course with 

Examples in R and Stan. 2nd ed. Boca Raton: Taylor and Francis, CRC Press. 
(particularly chapter 13).

•	 Gelman, Andrew, Jennifer Hill, and Aki Vehtari. 2021. Regression and Other 
Stories. Cambridge, United Kingdom: Cambridge University Press. (particularly 
chapter 17).

5 In the limit, a first-stage model with zero predictors would yield identical poststratified estimates 
for each state, equal to the survey sample mean.
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Review Questions
	1.	 What other individual-level or group-level variables might be useful to include 

in the first-stage model of opinion on police reform, if they were available?
	2.	 Why is regularization crucial for constructing good first-stage MRP models?
	3.	 What are the benefits and potential downsides of using a synthetic poststratifica-

tion frame?
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Chapter 6
Pathway Analysis, Causal Mediation, 
and the Identification of Causal 
Mechanisms

Leonce Röth

Abstract  This chapter presents the systematic analysis of causal mechanisms from 
the perspective of pathway analysis as an essential complement to conventional 
approaches to causation. It builds on the evidence that credible causal identification 
defies design-based strategies such as randomization or linear mediation analysis 
unless their research designs are supported by reliable mechanistic knowledge. The 
chapter reasons that the reliable causal identification of a mechanism requires the 
concept of ‘natural indirect effect’ and a double-nested counterfactual strategy. It 
discusses the empirical quantification of causal mechanisms and its underlying 
assumptions, offers empirical examples that clarify them, and reviews the condi-
tions and limits of the strategy.

Learning Objectives
After studying this chapter, you will be able to:

•	 Understand the meaning of a mechanism from the pathway perspective.
•	 Learn how a counterfactual perspective on causality relates to mechanistic 

thinking.
•	 Learn how to identify and quantify causal mechanisms using non-parametric 

procedures.
•	 Understand why randomization alone does not suffice to identify causal 

mechanisms.
•	 Learn how to identify mechanisms when treatment and mediator interact.
•	 Understand the crucial assumptions under which indirect natural effect estimates 

equal identified causal mechanisms.
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6.1 � Introduction

An increasingly popular postulate of causal analysis maintains that good research 
includes some account of how one variable generates another to underpin a causal 
claim. Causal mechanisms are at the center of research in small-n analyses, often 
are a crucial part of the theoretical argument in large-n studies, and prove indispens-
able for scholars of systematic pathway analysis. In some accounts, a credible 
causal mechanism makes the difference between explanatory and non-explanatory 
propositions (Waldner, 2007, 146; Kiser & Hechter, 1991, 5; Mayntz, 2004, 14; 
Hedström, 2008).

Asking not just for a cause of an effect but also for the intermediate process in 
between is a deeper or second form of asking why (Pearl & Mackenzie, 2018, 
299–300). The response to this deeper why always complements other types of evi-
dence but remains crucial for qualifying the external and internal validity of causal 
relations. Indeed, mechanisms can raise our confidence in the established validity of 
a causal association – or undermine it (internal validity). Moreover, their knowledge 
can change the inference on evidence even from well-executed trials and improve 
the next experimental setup. This is because mechanisms convey information on the 
scope conditions of a causal association, which expose the limits of causal effects 
and their underlying processes (external validity). Besides, knowledge of mecha-
nisms can reveal multiple pathways between cause and outcome, thus guiding us to 
more effective interventions.

A textbook illustration of these points comes from one of the earliest documented 
controlled experiments. In 1747, James Lind observed that eating citrus fruits pre-
vents scurvy; understanding and validating the mechanism between citrus intake 
and scurvy prevention took another 183 years. In the meantime, the link from citrus 
to scurvy was discredited because the mechanism and its scope conditions remained 
unknown.1

The central intuition about the citrus treatment was that it involved vitamin C – a 
particular type of acid, later called ‘ascorbic’ in recognition of its scurvy preventive 
properties. We now know that vitamin C oxidizes when exposed to heat and light or 
put in contact with copper. In other words, the citrus treatment only works under 
specific scope conditions. Back then, however, the juice was heated for conserva-
tion, copper pipes were in widespread use, and exposure to light was regular. Thus, 
many attempts to produce lime juice for sea travels proved ineffective against scurvy.

Furthermore, mechanisms take time to unfold. Today we know that the intake of 
ascorbic acid activates the synthesis of the enzyme collagen IV. Collagen is a struc-
tural protein necessary for healthy blood vessels, muscle, skin, bone, cartilage, and 
other connective tissues. Ascorbic acid is required for various biosynthetic path-
ways; when these pathways decay, humans develop a series of symptoms 

1 The startling history of the cure for scurvy is well told in Lewis (1972). Pearl and Mackenzie 
(2018) recall it to illustrate mediation. This chapter’s version enriches the history with some recent 
knowledge about the causal mechanism, and gives center stage to its scope conditions.
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collectively assembled in the diagnosis of scurvy. Moreover, humans cannot synthe-
size collagen without ascorbic acid and have a low capacity to store it. As collagen 
IV synthesis stops 4–12 weeks after the last intake of ascorbic acid, symptoms of 
scurvy start to be visible after 4 weeks. The citrus intake also appeared ineffective 
for sea travels as the diffusion of steam navigation made many sea trips too short for 
the symptoms to show. However, Arctic expeditions remained long enough, and 
many seafarers suffered from scurvy in expeditions until the early twentieth century.2

For long, the wrong inference that citrus intake is ineffective for scurvy preven-
tion survived due to the lack of knowledge of the mechanism of activation of col-
lagen IV synthesis. Filling this gap proved crucial for restoring the causal association, 
as the mechanism disclosed many necessary scope conditions required for it to 
hold – namely, time, temperature, and exposure to light or copper. These conditions 
imply that the link between the effect of the treatment and the outcome can only be 
established in a study period of at least 4 weeks and if the ascorbic acid is kept 
intact. Moreover, they suggest that the link blurs whenever equivalent pathways are 
activated – for instance, if seafarers can eat raw meat or any fresh food containing 
sufficient ascorbic acid. Thus, perfect randomization of citrus intake may not reveal 
its preventive effect when its design does not take the relevant scope conditions of 
the mechanism into account.

In short, the knowledge of mechanisms improves three vital criteria of scientific 
inference – reliability and internal and external validity. But how to study mecha-
nisms systematically?

In the following, I present the answer provided by the particular version of path-
way analysis that merges graph theory with a counterfactual model of causality into 
a powerful framework for identifying mechanisms. This development is roughly 
15 years old and still in full swing. It has taken computer science and biology by 
storm: biostatisticians now usually run millions of pathway models a minute to 
analyze gene expressions and understand the mechanisms linking a drug treatment 
and its effect. In comparison, social scientists still seem hesitant to embrace the 
many benefits that such a pathway perspective can bring. This chapter’s first and 
foremost intention is to reduce hesitation.3

To this end, Sect. 6.2 locates the mechanistic why-question in the philosophy of 
science and discusses the assumptions under which a generic definition of a path-
way or mediator4 can be called ‘a mechanism’. Then, Sect. 6.3 discusses how to 
distinguish between mechanistic associations and causal mechanisms. To this end, 
it dwells upon a remarkable strength of this method for pathway analysis  – a 

2 Notably, the two expeditions of Robert Falcon Scott to Antarctica in 1903 and 1911 suffered 
greatly from scurvy.
3 Excellent discussions of causal identification of mechanisms using graph theory are in Morgan 
and Winship (2015, Chap. 10); Pearl and Mackenzie (2018, Chap. 9); VanderWeele (2015, Part 
One). This chapter owes almost everything to these contributions. However, it takes a more specific 
angle on the causal identification of mechanisms in the social sciences.
4 Note that, in some disciplines, the identification of mechanism is synonymous with causal media-
tion analysis. Here, instead, mediation is considered a special instance of pathway analysis.

6  Pathway Analysis, Causal Mediation, and the Identification of Causal Mechanisms



126

graphical rendering of causal assumptions that helps to lay out the structural condi-
tions under which pathways are causally identified or mistaken. Thus, it clarifies 
how the graph perspective improves on one of the most applied and cited methods 
in the history of the social sciences – the so-called Baron-Kenny approach to media-
tion analysis – and, in so doing, enhances our conditioning strategies.

Section 6.4 discusses the innovative core of pathways analysis  – namely, the 
‘decomposition’ and the quantification of the total, direct, and indirect effects on 
observational data. Indeed, Judea Pearl and others spearheaded a causal revolution 
when they defined the conditions of causally identified pathways and developed 
non-parametric formulae to decompose total effects into direct and indirect ones 
(Pearl, 2022). This quantification strategy of pathway effects took time to be 
accepted and faced some deep-rooted skepticism from the more conventional quar-
ters of causal analysis (e.g., Rubin, 2004; Rubin, 2005). Nevertheless, social science 
scholars are slowly getting familiar with indirect effects and their underlying coun-
terfactual theory of causation (see Imbens, 2020).

Section 6.5 replicates one influential model from development economics and 
sketches another from educational research. The first example demonstrates how 
strong supposedly mechanistic inference based on innovative cluster randomization 
in Kenya can be misleading. The second example shows how pathways analysis can 
draw important mechanistic lessons from a randomized controlled trial run in the 
United States to seemingly no effect. These examples prove mechanistic knowledge 
essential to validate and refine even causal evidence from compelling research 
designs.

The last section of this chapter intends to keep the promises of the pathway 
approach in check and dispel the illusion that causal identification is a simple tech-
nical exercise. As randomized controlled trials or instrumental variable applications 
show, the devil lies in the detail of the exclusion restrictions; in this respect, pathway 
causal identification is even more demanding than total effects via randomization or 
quasi-randomization. Pathway analysis reminds us that our models seldom ensure 
the perfect causal identification of a mechanism. Indeed, the complexity of the real 
world typically defies our attempts to draw exhaustive causal maps with analytic 
tools that require exclusion restrictions. Nonetheless, these restrictions ensure the 
transparent rigor that qualifies evidence as causal and distinct from mere association.

6.2 � Can Pathways Be Mechanisms?

Sometimes, the concepts of mechanism, pathway, and mediation can be confusing. 
All three terms adhere to the general idea of increasing causal depth by diminishing 
the contiguity of time and space between cause and outcome. However, what exactly 
is considered a cause–effect framework and a mechanistic framework is subject to 
the relative status of a research field and is constantly in flux (see also Chap. 2, 
Sect. 2.3.1).
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What appears to be a sufficiently deep causal mechanism in one particular 
research tradition and time can be perceived as a superficial association in another. 
Ideally, research fields increase causal depth over time and remain cautious about 
the trade-off between desirable specificity and useful parsimony (Craver & Kaplan, 
2020). The balance of specificity and parsimony changes while research progresses, 
and what was considered a mechanism once might be addressed as separate cause–
effect relations. Recall from the introduction that it took 183 years to detect the 
crucial acid for the mechanism between citrus intake and scurvy prevention. During 
the attempts to isolate ascorbic acid, the intake of vitamin C could have been appro-
priately described as the causal mechanism. In light of new knowledge, researchers 
today focus on way more specific biosynthesis pathways as distinct causal relation-
ships. In short, researchers have approached the old mechanism to more causal 
depth. Philosophers of science call this kind of deepening process “bottoming-out” 
(see Fig. 6.1) or, in simpler terms, delivering on the demand for the explanation that 
can stop the infinite regress in causal analysis.

Aiming at fundamental explanations has had a strong appeal for a long time now 
in the social sciences (see Elster, 1989; Goldthorpe, 2001; Hedström et al., 1998; 
Hedström & Ylikoski, 2010; Knight & Winship, 2013). Nonetheless, causal mecha-
nisms are also seen as the least understood kind of causal claim (Gerring, 2010; 
Hedström & Ylikoski, 2010; Waldner, 2012).

Some scholars use the term “mechanism” to refer to a series of events between 
the original cause and the outcome (Abell, 2004; Mahoney, 2012; Morgan & 
Winship, 2015; Pearl, 2009, Pearl & Mackenzie, 2018). The concept of “pathway”, 
too, indicates a chain of mediators connecting a cause to an outcome. Thus, some 
have embraced the term “mechanism” for the analysis of pathways across cases (see 
Gerring, 2010; Imai et al. 2011; Weller & Barnes, 2014; Woodward, 2003, 350–58; 
Runhardt, 2015; Morgan & Winship, 2015, 325–352). Other scholars, however, try 
to exclusively use the term “causal mechanism” for process tracing within single 
cases (for example, Beach, 2017). These scholars adhere to the “process” or “physi-
cal” theories of causation that provide a substantive account of what causal pro-
cesses are in light of what science tells us about the world (Dowe, 2000, 1–11 and 
Chap. 10).

Far from a terminological subtlety, these usages point to a fundamental divide 
over the concept of mechanism. The first group considers causality a matter of epis-
temology that can be addressed with probabilistic or counterfactual models. From 
this standpoint, establishing causation is an exercise in logic that many techniques 

Fig. 6.1  Approaching to causal depth
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can perform – provided that they afford comparisons (“type” causality; see Rohlfing 
& Zuber, 2021, 1634–35). In contrast, the holders of the process theory of causation 
maintain that causality is necessarily local – which means that it is manifest only in 
individual cases (“token” causality). Following the process view, within every 
unique case, causality exists in fine-grained sequences of entities’ activities that 
have to satisfy the criterion of seamless productive continuity (Dowe, 2000). From 
the perspective of bottoming-out, the process viewpoint on mechanistic causation 
raises the highest possible demand on causal depth.

A pathway as a sequence of mediators (or interactions) cannot satisfy the onto-
logical criteria established by the process view of mechanistic causation. First, 
seamless productive continuity can hardly be demonstrated by pathway analysis. 
Second, the very strength of pathway analysis lies in inferences from comparisons 
across cases or samples. In short, from the process view on causation, pathways do 
not deserve the term “mechanism”. However, this reservation is a relative rarity in 
the social sciences. Most scholars are satisfied with an evidential view on mecha-
nisms as a cause-to-effect pathway that at least includes one mediator. Even without 
satisfying the high demands from the process view, pathway analysts also approach 
causal depth as they want to know what connects a supposed cause and its outcome 
at the fundamental level, hence in a general form. As we will see in the next part, the 
biggest strength of pathway analysis in that ambition for deeper explanations is 
epistemological. Pathway analysis has developed clear and transparent criteria to 
distinguish causal mechanisms from mechanistic associations.

6.3 � Identifying Causal Mechanisms with Graphs

Causal identification is a general problem independent of the commitment to a 
mechanistic theory (Pearl, 2009). Pearl’s metaphor of a “ladder of causation” ren-
ders the solutions to the identification problem as a historical endeavor to more 
reliable causal knowledge (Pearl & Mackenzie, 2018, 23–52). In this line of thought, 
scientists moved from the regularity theory over probabilistic theory to the interven-
tionist theory before reaching the top level of the counterfactual theory. As Pearl’s 
argument goes, counterfactuals win the highest pitch as they synthesize and improve 
on previous solutions to causal identification problems.

From a regularity viewpoint, only the perfect sequence of the candidate cause 
and outcome constitutes evidence for causation. In our scurvy example, the regular-
ity criterion requires that every citrus intake prevents scurvy without exceptions. 
The scope conditions of the mechanism demonstrated this bare inference mostly 
wrong. Under some circumstances, citrus can fail, or the causal effect might be 
observed without citrus. In Pearl’s account, the limits of perfect regularity motivate 
the shift toward the probabilistic account of causality.

The probabilistic account admits that a causal relation unfolds or fails due to 
scope conditions and alternative mechanisms but maintains that many of them 
remain unknown. Hence, our best knowledge about citrus intake can focus on 
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whether it affects the probability of getting scurvy net of contextual vagaries – that 
is, on average. However, evidence that a factor affects the probability of an outcome 
does not constitute evidence for causation either. A limit of the probabilistic 
approach is that it cannot establish the direction of causation – a problem known as 
“asymmetry” or “endogeneity”. In light of observed probability, for instance, it 
might also be that scurvy causes lemon intake.

The problem of asymmetry is solved when the candidate cause precedes the 
outcome. The best way of ensuring this order is to get some control over the candi-
date causal factor. So, if we prescribe citrus intake to healthy and compliant seafar-
ers once on board, we can gather more convincing evidence of its contribution to the 
probability of getting scurvy. This approach is at the heart of the ‘interventionist’ 
school of causality.

With the asymmetry problem being solved, the thorniest issue of causal identifi-
cation takes center stage. Even in an interventionist framework, confounders can 
bias the identification. Thus, we might mistake the sequence of two events as causal 
despite it being due to a third unobserved factor instead. Logically, the counterfac-
tual theory of causation can discriminate between a confounded relationship and a 
causal one. The observed event is the real cause when it precedes the outcome, and 
its manipulation resonates with a change in the outcome that would not have 
occurred without the intervention. Thus, the counterfactual subsumes all preceding 
approaches to causal identification. Moreover, it embraces the ‘would haves’ and, 
on this basis, can offer a single theoretical solution to both asymmetry and con-
founding problems.

The counterfactual approach is deeply embedded in pathway analysis with 
graphs. Its notation responds to the problem of asymmetry by using directed arrows 
to clarify the direction of causality in contrast to the equal sign typical of the regres-
sion framework. Directed arrows connect “nodes” or variables in structures of 
dependency that recall family trees. Thus, the nodes in a path of directed arrows can 
be indicated as “grand-parent”, “parent”, “child”, and “grand-child.” These struc-
tures embody strong and weak causal assumptions. An arrow between two nodes 
indicates a weak causal assumption. It renders the direction of dependency – the fact 
that values of the child variable change in response to the values taken by the parent 
variable – but neither its sign5 nor the size of the causal effect. The strongest causal 
assumption is the absence of an arrow between two nodes, as it signals that the cor-
responding variables take their values independently of one another. Furthermore, 
pathway analysts have introduced the so-called “do-operator” to mimic an interven-
tion on an arrow and model the effect of its removal on observational data. This 
operator marks a relevant difference from conventional counterfactual studies based 
on non-intervention.

5 However, some biologists introduced a distinction in the notation of the positive and the negative 
effects.
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6.3.1 � Closing the Backdoor

Graph theory offers a transparent strategy to tackle the two crucial problems of 
causal identification, namely, asymmetry and confounding. Figure 6.2 illustrates the 
task in its simplest form.

On the left-hand side of Fig. 6.2, we see the identification for the total effect 
framework, as in a typical correlation or regression analysis. To declare the associa-
tion between X and Y causal, we first need to demonstrate that X precedes Y and not 
the other way around. This assumption is embodied in the direction of the arrows. 
The second task is to check that the association between X and Y is not confounded 
by third factors such as C. Path X ← C → Y is a so-called “open back-door path” 
and can be seen as a pipe where non-causal variance is flowing that confounds the 
true relationship between X and Y. Back-door paths can be closed in two ways. 
First, by conditioning on C. If we can hold C constant, the back-door paths between 
X and Y are closed, and the association between X and Y is not confounded any-
more. To hold confounders constant is a common identification strategy – for exam-
ple, in multivariate regressions where we regress Y on X and condition on C (Pearl 
& Mackenzie, 2018, 157). A second widespread approach is the randomization of 
X. If we assign the treatment condition of X randomly, all associations running into 
X are broken, and, therefore, all back-door paths are closed (compare middle part of 
Fig.  6.2). Experimental designs build on the randomization of the treatment. In 
quasi-experimental designs – such as regression discontinuity or instrumental vari-
ables – randomness in the assignment to treatment arises indirectly from natural 
factors or events independently of the causal channel of interest (see Chap. 3). If we 
can rule out both reversed causality and confounding, the associations between X 
and Y imply causation by necessity. The power of the back-door criterion is that it 
reveals under which conditions associations are causal even based on observa-
tional data.

In a mechanistic framework, the two conditions for a causal interpretation of 
associations are the same: X needs to precede Y, and all back-door paths between X 
and Y need to be closed, as on the right-hand side of Fig. 6.2. However, these condi-
tions allow the causal interpretation of the total effect between X and Y, not the 
causal interpretation of the other quantities of interest to a mechanistic framework – 
namely, the effect of X on M (X → M, M being the mediator), and the effect of M 
on Y (M → Y; Y being the outcome). More conditions must be fulfilled to allow for 
a causal interpretation of the associations b and c on the right-hand side of Fig. 6.2. 

Fig. 6.2  Causal identification with and without a mechanism
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Fig. 6.3  Collider bias in 
mediation analysis

X has to precede M, and M has to precede Y. Furthermore, all three associations (a, 
b, and c) have to be un-confounded to reveal the ‘true’ causal effect from X → M, 
from M → Y, and the remaining effect of X → Y. In that framework, the total effect 
equals the sum of the effect from X over M to Y (the indirect effect) and the remain-
ing effect of X on Y (the direct effect).

If we randomize the treatment X of a mediation model, the randomized treatment 
blocks all arrows running into X. In the example on the right-hand side of Fig. 6.2, 
the randomization means ruling out the confounding of C1 and C2 so that the total 
effect of X on Y still is the true causal effect. However, even with a randomized 
treatment, we are still unable to quantify the indirect effect. The reason is that C3 is 
left unconditioned and confounds the relationship between M and Y (path c). 
Randomization of the treatment does close all back-door paths running into X but 
does not suffice to identify mechanisms. Unfortunately, the problem of potential 
confounding between M and Y runs even deeper.

Figure 6.3 represents a famous causal model of the effect of smoking on child 
mortality. It represents precisely the constellation described on the right-hand side 
of Fig. 6.2 and represents a fundamental problem of mechanistic identification, the 
collider bias. The collider bias has troubled statisticians for centuries and led to 
uncountable false inferences, the birth-weight paradox just being a prominent 
example.6

Let us consider the example in Fig. 6.3. In the mid-1960s, Jacob Yerushalmy 
pointed out that smoking during pregnancy seemed to benefit the health of children 
if the baby happened to be born underweight – the so-called “birth-weight paradox” 
(see Yerushalmy, 1971).7 Until 2006, this paradox remained unexplained.

In an extensive data set, Yerushalmy found unexpected relationships. Babies of 
smokers were lighter than babies of non-smokers. However, within the group of 
low-birth-weight babies, the babies of smoking mothers had a better survival rate 
than those of non-smokers. It was as if the mother’s smoking had a protective effect 
within the group of babies being born underweight. The inference was that “there is 
no causal path from smoking to mortality” (Yerushalmy, 1971). How come?

Yerushalmy’s findings are the consequence of a problematic conditioning strat-
egy. He was unaware of the importance of genetic disposition and operated under 

6 It likely was Barbara Burks who first modeled the problem using causal graphs in 1926.
7 An excellent discussion of the birthweight paradox can be found in Wilcox (2006).
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Fig. 6.4  Collider bias in mediation analysis

the assumption of the left model in Fig. 6.4. However, even within that model, it 
does not make sense to condition on birthweight. Birthweight is not a confounder, 
but a mediator. Conditioning on the mediator means correcting for the variance that 
runs through it. In the example, it means controlling for the indirect effect of birth-
weight. The remaining effect of X on Y is typically seen as the direct effect.

Conditioning on a mediator is justified to separate the indirect effect 
(X → M → Y) from the direct one (X → Y). As such, it lies at the heart of the con-
ventional mediation analysis. Indeed, conventional mediation analysis compares 
effect estimates of the cause based on two separate regressions. The crucial differ-
ence runs between the estimate of the coefficient of X on Y in a model without a 
mediator and in one conditioned on the mediator. As an illustration, if 100% of the 
variance of the effect from cause X runs through mediator M, conditioning on M 
leads to a null coefficient of the cause. Baron and Kenny (1986) define three neces-
sary, but not sufficient, conditions for detecting mediation along these lines8:

–– X has to be significantly related to M.
–– M has to be significantly related to Y.
–– The total association between X and Y has to decrease when M is kept in 

the model.

This reasoning allows inferring four types of mediations based on how the effect 
between X on Y changes when we condition on M (see Fig. 6.5).

Conventional mediation analysis speaks of ‘full mediation’ when the total vari-
ance is associated with the path from X via M to Y (indirect effect), and the direct 
effect of X on Y leaves nothing unexplained. “Partial mediation” is inferred from a 
reduced direct effect of X on Y after conditioning on the mediator. “No evidence for 
mediation” is inferred when the conditioning on the mediator does not affect the 
direct effect from X on Y. Finally, “inconsistent mediation” is inferred when the 
adjustment on the mediator reverses the direction of the effect of X on Y.

The birth weight paradox is an instructive example of inconsistent mediation. 
The reason is that the most prominent factor for low birth weight is a specific genetic 
disposition that sorts an even higher impact on mortality than smoking. Genetic 
dispositions confound the path M →  Y, as illustrated on the right-hand side of 

8 Note that this paper is one of the most cited papers in scientific history.
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Fig. 6.5  Types of mediation. (Note: *** refers to the level of significance)

Fig. 6.4. It is easy to see that Yerushalmy overlooked an important confounder; what 
is not so easy to see is that Yerushalmy conditioned on a collider.

A collider is given when the same outcome depends on two different causes or, 
in graphical terms, when at least two arrows point to the same node. In Fig. 6.4, 
birthweight is a mediator (X → M → Y) and a collider (X → M ← C). Adjusting for 
the collider means opening a closed back-door path from X over C to Y. In other 
words, conditioning on birthweight creates a spurious positive association between 
the smoking of mothers and children’s survival because genetic dispositions con-
found the relationship between birth weight and child mortality.

In short, Yerushalmy’s surprising findings follow from this troublesome condi-
tioning strategy. Conditioning on birth weight leads to an entirely new comparison 
within the stratum of children with low weight at birth. Within this new stratum, 
smoking mothers seem to affect babies’ survival positively. However, this associa-
tion is spurious. Genetic disposition has an even stronger effect on birth weight than 
smoking, and unless controlled for, it biases the association between birth weight 
and child mortality.

The graph-theoretical solution of the birth weight paradox offers at least two 
important lessons. First, while conditioning on confounders closes back-door paths 
and yields unbiased associations, conditioning on mediators and/or collider vari-
ables leads to biased associations. Second, and more important for the causal iden-
tification of mechanisms, standard mediation analysis proves unreliable. 
Conditioning on a collider has caused uncountable “mediation fallacies” (Pearl & 
Mackenzie, 2018, 315). Despite the increased awareness, the pervasiveness of the 
problem can still be underestimated. Indeed, mediation fallacies are not limited to 
the cases of inconsistent mediation. Instead, they may affect all types of conven-
tional mediation with significant consequences. If a collider cannot be ruled out, 
regression-based mediation analysis cannot be trusted to produce reliable effect 
estimates as we cannot quantify the bias introduced by conditioning on the mediator.

Figure 6.6 illustrates a more complex causal system where we might be inter-
ested in the relative importance of pathway X → M1 → M2 → Y versus pathway 
X → M3 → Y. This identification task clearly falls beyond the possibilities of the 
regression framework and demands the more powerful approach to pathway analy-
sis that graphs afford instead.

The overall model entails 11 variables and consists of 16 paths. The back-door 
criteria guide us to an effective conditioning strategy. There is no confounding 
between X and Y and the total effect represents the true causal effect, as we declare 
the causal system exhaustive. However, estimating the indirect effect of the two 
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Fig. 6.6  More complex pathways

pathways of interest requires conditioning. The effect of path b is biased unless we 
condition on C1. The effect of path d is biased unless we condition on C2, C3, or C2 
and C3  – conditioning on any of these confounders blocks the back-door path 
M2 ← C2 → C3 → Y effectively. A1 could be considered an alternative explanation 
for Y on which it is unnecessary to condition because it does not affect the quantities 
of interest. C4 and C5 should not be conditioned on: C4 is a collider and would open 
the non-active backdoor path M3 → C4 → C5 → Y; similarly, C5 should not be 
conditioned because of the extended collider rule that even ‘descendants’ of collid-
ers, too, activate back-door paths.

The overall goal of the conditioning strategy guided by the back-door criterion is 
to block all the paths that generate non-causal associations between the cause and 
the outcome without inadvertently blocking any of the paths that generate the causal 
effect itself (Morgan & Winship, 2015, 109). Conditioning on C in Fig. 6.2 is a 
viable option whereas conditioning on M in Fig.  6.3 opens an otherwise closed 
back-door path. Eventually, with Morgan and Winship (2015, 109), the back-door 
criterion can be defined as follows:

If one or more back-door paths connect the causal variable to the outcome variable, the 
causal effect is identified by conditioning on a set of variables Z if

Condition 1: All back-door paths between the causal variable and the outcome variable 
are blocked after conditioning on Z, which will always be the case if each back-door path

	(a)	 Contains a chain of mediation, where the middle variable is in Z or
	(b)	 Contains a fork of mutual dependence, where the middle variable is in Z or
	(c)	 Contains an inverted fork of mutual causation, where the middle variable and all of its descen-

dants are not in Z

and
Condition 2: No variables in Z are descendants of the causal variable that lie on any of 

the directed paths that begin at the causal variable and reach the outcome variable.

However, closing the back-doors is only one of two possible identification strategies.

6.3.2 � Closing the Front Door

The front-door criterion provides another interesting identification strategy derived 
from causal graph theory in cases where essential confounders remain unobserved. 
For example, let us turn to the prize-winning paper on skills and the labor market by 
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Glynn and Kashin (2018). Glynn and Kashin applied the front-door criterion to a 
well-known dataset on the effect of the Job Training Partnership Act (JTPA). The 
Act institutes a job training program to equip participants with different skills. The 
dataset contains data on the people who applied for the program, whether they 
showed up, and their earnings over 18 months. The study includes a randomized 
control trial (RCT) and an observational component. Figure 6.7 provides the causal 
graphs of the general problem (left), the example (middle), and the front-door 
approach (right).

The variable signed up records whether a person did enroll to the job training, the 
variable showed up whether the enrollee did use the services. The program can only 
affect the earnings if users showed up, so the absence of a direct arrow between 
signed up to earnings can be easily justified. In other words, the entire effect is 
mediated. Let us say cause, outcome, and mediator are all affected by the general 
motivation of an applicant, but unfortunately, we have not measured motivation. In 
a causal graph, an unmeasured variable is typically depicted by a hollow node.

The logic of the front door is to block all paths running into M – in other words, 
to shield the mediator. In the example of Fig. 6.7, we might randomly call applicants 
off and compare the randomly canceled applicants with those given real training. 
With all front-door paths being closed, the estimates of paths b and c can be calcu-
lated and are unbiased by definition. In that example, absent a direct effect, the 
indirect effect equals the total effect, and the estimate using the front-door equals 
the estimate based on the randomization of X.  Glynn and Kashin compared the 
front-door predictions with those from a randomized controlled experiment, and 
found the results very similar (Glynn & Kashin, 2018).

The front-door approach could remove almost all of the bias introduced by the 
omission of the confounder of motivation. In contrast, a simultaneous estimation 
using the back-door without the possibility of conditioning on motivation showed 
substantial differences to both the experimental results and the front-door approach 
(Glynn & Kashin, 2017, 2018).

With Morgan and Winship (2015, 333–334), the front-door criterion can be 
defined as follows:

If one or more unblocked back-door paths connect a causal variable to an outcome variable, 
the causal effect is identified by conditioning on a set of observed variables, M, that make 
up an identifying mechanism if

Fig. 6.7  How to shield a mediator
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Condition 1 (exhaustiveness): The variable in the set M intercepts all directed paths 
from the causal variable to the outcome variable.

and
Condition 2 (isolation): No unblocked back-door paths connect the causal variable to 

the variables in the set M, and all back-door paths from the variables in the set M to the 
outcome variable can be blocked by conditioning on the causal variable.

At this point, we have learned two different ways to identify causal mechanisms. By 
definition, closing all back-door paths or closing all front-door paths leads to causal 
estimates even with observational data. The logic of back-door paths explains why 
the identification of indirect effect is neither ensured by the randomization of the 
cause nor by conditioning on the mediator as applied by conventional regression-
based mediation analysis. The next section discusses how indirect and direct effects 
can nonetheless be identified.

6.4 � Identifying Indirect Effects

For a long time, mediation analysts defined:

	 TotalEffect Direct Effect Indirect Effect� � 	

This formula understands the indirect effect as a residual category. The Baron-
Kenny approach (1986) is entirely built upon this logical pillar. As a straightforward 
consequence, the conventional approach advised conditioning on the mediator to 
arrive at the direct effect and, in force of the composition assumption, calculating 
the indirect effect of mediation as the total minus the direct effect.

The first problem, as already seen, is that the composition stands if M and Y are 
not confounded or, in other words, if a collider bias can be ruled out. The second 
problem is that the estimate of the residual is only credible in strictly linear systems. 
Once we relax the linearity assumption, the composition rule fails (Pearl & 
Mackenzie, 2018, 322–336).9

6.4.1 � Indirect Effect in Non-linear Systems

The language of indirect, direct, and total effects evolved in the 1970s, but only 
recently was the indirect effect defined in causal terms. This shift entailed embrac-
ing counterfactual thinking.

9 The problem of conventional mediation analysis is very fundamental. Mediation analysis based 
on the difference methods (Baron & Kenny, 1986; Judd and Kenny, 1981) and linear regression 
models suffer from problems in the presence of interactions, non-linearities, binary outcomes, 
unobserved confounders, and other modeling complications (see Shpitser, 2013).
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Let us start with the direct effect using the do-calculus. In the simple graph of 
treatment (X), mediator (M), and outcome (Y), we get the direct effect of X on Y 
when we intervene on X without allowing M to change. We do(M = 0) and ran-
domly assign units to do(X = 1) or do(X = 0). We call this the ‘controlled direct 
effect’ or CDE.

CDE(0) raises when we force the mediator to take on the value of zero and can 
be computed as

	

CDE Pr do do Pr do do( ) | , |, |,0 1 1 0 1 0 0� � �� � �� �� � � �� � �� �� �Y X M Y X M�
	

Had we forced the mediator to be 1, we would have denoted the resulting controlled 
direct effect as CDE(1). In practice, however, this alternative strategy could prove 
unwise as it forces M on instances of X that are potentially implausible to observe. 
Moreover, inferring the direct effect from the difference between CDE(1) and 
CDE(0) is to infer from an over-controlled experiment.

The so-called ‘natural direct effect’ or NDE offers an alternative perspective. We 
randomize X, but let M take the value it would naturally do. The ‘would’ indicates 
that a counterfactual is required and can be calculated as follows:

	
NDE Pr do Pr do� � �� �� � � �� �� �� �Y X Y XM M M M0 01 1 1 0| | .�

	

The NDE subtracts the probability of having a positive outcome without the treat-
ment (X = 0) under M equal to zero from the probability of having a positive out-
come with the treatment (X = 1) again under null M. In short, the NDE holds the 
mediator constant while the treatment is forced toward specific values. Indirect 
effects, unlike direct effects, have no controlled version because there is no way to 
disable the direct path by holding some variable constant.

Indirect effects have a natural version, too, which again requires thinking in 
counterfactual terms. The natural indirect effect (NIE) is when we would abstain 
from the treatment, but allow the mediator to be present. Understanding the causal 
properties of the indirect effect requires a double-nested counterfactual. In formal 
terms, we can define the natural indirect effect as follows:

	
NIE Pr do Pr do� � �� �� � � �� �� �� �Y X Y XM M M M1 01 0 1 0| |�

	

The first term indicates the probability of a positive outcome under absent treatment 
and present mediator. From this quantity, we subtract the probability of the positive 
outcome under the ‘natural’ situation where both the treatment and mediator 
are given.

The counterfactual M1 must be computed for each observation on a case-by-case 
basis. This requirement places the natural indirect effect out of the experimenters’ 
reach as they may not know the value of the mediator M1 for any particular 
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treatment X at the level of the individual unit. However, assuming there is no con-
founding between X and M as well as M and Y (i.e., ruling out the confounding and 
the collider bias), the NIE can still be computed on observational data. The natural 
indirect effect entails denying the treatment to anyone, and letting the mediator take 
the value it would have in the presence of the counterfactual treatment for each 
individual. The difference yields Pearl and Mackenzie (2018, 333) mediation for-
mula as follows:

	
NIE Pr Pr Pr m

m

� �� � �� ��� �� � � �� �� X X Y X M1 0 1 0� � |, |,
	

The expression stands for the effect of X on M in the subset of the units where the 
mediator takes the value m (in square brackets) times the probability that Y = 1 
when X = 0 and the mediator takes the value m. So formulated, the NIE exposes the 
source of the product-of-coefficients idea and casts the product of two non-linear 
effects. Moreover, this formula allows calculating what is explained by mediation 
and the percentage owed to mediation.

6.4.2 � Indirect Effect When the Cause 
and the Mediator Interact

The identification of indirect effects becomes more complex when the mediator and 
the supposed cause (or “exposure”) interact. A unified perspective on the decompo-
sition of the total effect in a case where the independent variable of interest interacts 
with the mediator has been provided by VanderWeele (2014).

So far, effect decomposition has meant to split a total effect into an indirect and 
direct one. In the presence of exposure-mediator interaction, two components need 
to be added: the one due to interaction only; the other due to mediation and interac-
tion (see VanderWeele, 2014, 751). The counterfactual assumptions to identify the 
effect quantities are similar to those required to analyze causal mediation without 
interaction. As in the case of causal mediation, indirect effects including interac-
tions require double-nested counterfactuals, whereas the direct effect requires 
weaker assumptions. The attribution of the interaction quantities to either the indi-
rect or direct effect, instead, remains an empirical question. Figure 6.8 illustrates 
two possible response strategies based on VanderWeele (2014, 757).

The fourfold decomposition depicted in Fig. 6.8 encompasses both decomposi-
tions for mediation and interaction.

For interaction, the reference interaction (INTref) and the mediated interaction 
(INTmed) combine to the portion attributable to interaction (PAI). The portion 
attributable to interaction (PAI) combines with the controlled direct effect (CDE) 
and the pure indirect effect (PIE) to give the total effect (TE).
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Fig. 6.8  Fourfold decomposition

For mediation, the controlled direct effect and the reference interaction (INTref) 
combine to give the pure direct effect (PDE); the pure indirect effect (PIE) com-
bines with the mediated interaction (INTmed) to give the total indirect effect (TIE), 
and the pure direct effect (PDE) combines with total indirect effect (TIE) to give the 
total effect (TE).

6.4.3 � Wrapping Up

The graph theory reveals that the identification of causal mechanisms requires coun-
terfactuals. The natural indirect effect is when we abstain from the treatment, but the 
mediator is present. Contrasted with the state where both the treatment and the 
mediator are present, we can quantify how much of the effect of X on Y is captured 
by the mediator M, and how much of Y is owed to the mediator M alone. Such a 
natural indirect effect gauges a causal mechanism once the back-door criterion is 
satisfied, e.g., all back-door paths are closed.

The consequences of this definition are far-reaching. The identification of causal 
mechanisms appears as out of reach to the conventional mediation analysis than to 
randomization. What appears as bad news can also be a good insight, as the natural 
indirect effect yields a mediation formula stripped of any parametric assumptions. 
Under some assumptions, this formula allows quantifying the causal mechanism 
based on observational data. Section 6.5 demonstrates this claim with the example 
of a renowned identification debate.
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6.5 � Applications

6.5.1 � A Mechanistic View on the Worm Wars

In this application case, I add a causal mediation view to the “worm wars”  – a 
famous debate over the interpretation of influential cluster randomization in Kenya 
that, besides other studies, brought one of its authors, Michael Kremer, the Nobel 
Memorial Prize in Economic Sciences in 2019.

The study originates from the evidence that nearly two billion people world-
wide – mostly children – are infected by intestinal worms. These species inhabit the 
human digestive tract; they spread by expelling their eggs via the body waste of 
infected people. Without good sanitation, these microscopic eggs can find their way, 
unnoticed, onto the skin or food of another person. Once someone ingests an egg, 
the reinfection cycle continues. Poor sanitation facilities and hygiene practices 
allow infections to spread locally.

In 2004, a landmark study showed that an inexpensive medication to treat para-
sitic worms could improve health and school attendance for millions of children in 
many developing countries (Miguel & Kremer, 2004). Eleven years later, a headline 
in The Guardian reported that the deworming treatment had been debunked. In 
2021, a carefully exercised replication study restated the original findings (see 
Ozier, 2021). Why so?

Miguel and Kremer convincingly argued that, due to the infectiousness of the 
worms, individual treatments are unlikely to be effective because children will 
quickly re-infect themselves with other children. Consequently, they run an encom-
passing field experiment in Kenya using cluster randomization at the school level. 
The experiment compared more than 25,000 treated children across three waves to 
a control group for each wave with similar attributes except for the suppressed treat-
ment. They found a remarkable effect of the treatment on school attendance not 
only in the treatment area (up to 3 km) but also in the surrounding areas (3–6 km 
from the treatment).

Replication analyses have mainly confirmed the direct effect in the treatment 
areas. However, the spillover effects became subject to debate and turned insignifi-
cant in some specifications (for example, Aiken et al., 2014). The debate about the 
replication involved many influential scholars, was covered by several blogs, and 
eventually came to be known as the “worm wars”. A systematic review of the debate 
seemed to restore the trust in the key findings of the original study. Ozier (2021) 
concluded that, if anything, years of debates and replication have reinforced his 
belief in the main effect. In short, it appeared as if the treatment of Miguel and 
Kremer had indeed sorted a substantial positive impact on children’s school 
attendance.

However, there is a second line of skepticism, less concerned with the signifi-
cance levels of the total effects but with the plausibility of the indirect effect. The 
indirect effect, as we have learned, considers the probability of a positive outcome 
(school attendance) given that we do not have a treatment (no de-worming drug 
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intake), but we set the mediator (being, in fact, de-wormed) to the values as if we 
would have had treatment (de-worming drug intake). We contrast this with the prob-
ability of a positive outcome (school attendance) under natural conditions where the 
treatment is given (de-worming drug intake) and the mediator too (being de-
wormed). Based on Pearl’s mediation formulae, we can compute the natural indirect 
effect using observational data. The results can be given a causal interpretation if we 
can exclude confounding between the mediator (being de-wormed) and the out-
come (school attendance).

This mechanistic perspective on the study is of great interest for at least two 
reasons. First, experts in deworming cast considerable doubt on the findings. 
Epidemiologists refused to include the paper in a meta-study for methodological 
reasons (no blinded treatment was performed) and referred instead to existing epi-
demiological studies that, if at all, showed very modest effects of deworming on 
school attendance. In other words, the authors of a Cochrane review were uncon-
vinced that de-worming could have had such a substantial effect as reported in 
Miguel and Kremer (Taylor-Robinson et al., 2015). Second, the authors of the origi-
nal experiment framed their study and their results as if they had strong evidence for 
the entire mechanism. In the words of the authors’ abstract, “[d]eworming substan-
tially improved health and school participation among untreated children in both 
treatment schools and neighboring schools, and these externalities are large enough 
to justify fully subsidizing treatment.” (Miguel & Kremer, 2004, 159). In short, the 
authors’ inference is that their evidence point to a clear recommendation for subsi-
dizing de-worming treatments because de-wormed students have a higher likeli-
hood of attending school. Is it the de-worming via the drug intake that causes 
students to attend school more often?

Based on the original data, the mediation formulae can be used to put the mecha-
nistic claim under scrutiny. Table 6.1 includes all probabilities required to compute 
the natural indirect, natural direct, and the total effect based on the replication data 
of Miguel and Kremer (2014), Miguel et al. (2014).10 By relating indirect and direct 
effect quantities to the total effect, we can draw valuable conclusions. The natural 
indirect effect supports the suspicion of the epidemiologists. Only 1.8% of the total 
effect would be achieved by worm-free students alone. In contrast, 94.2% of the 
total effect is related to the natural direct effect of the treatment other than 

10 For the replication, I use a very simple model based on the drug treatment in the first period of 
the field experiment. The experiment had three waves, but the comparison groups changed during 
the waves and because the effect on school attendance is predominantly a result of the first wave, 
I focus on the first wave only. For the mediator, I use the reversed indicator of any moderate or 
heavy worm infection based on the WHO standard in 1999. I see the mechanism present when a 
treated student is indeed free of worms. For the outcome, I use a dummy of students being present 
in school at times of the surprise visit. The current documentation of the data is exemplary (see 
Miguel and Kremer, 2014; Miguel et al. 2014; Hicks and Nekesa, 2014).
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Table 6.1  Probabilities of the treatment, the mechanism, the outcome and the natural direct 
(NDI), indirect (NIE), and total effect (NTE)

Treatment condition, mediator condition, and outcome probabilities

Treatment Dewormed
Present in school 
(in %) Treatment

Dewormed (in 
%)

Yes Yes 0.90 No 0.55
Yes No 0.86 Yes 0.59
No Yes 0.86
No No 0.85

Inference
NIE 0.05 NIE/TE 1.8 1.8% of the school attendance effect would be 

achieved by worm-free students alone
NDE 2.7 NDE/TE 94.2 94.2% of the attendance effect is related to the 

treatment other than deworming students
TE 2.9 1-NDE/TE 5.8 5.8% of attendance effect is owed to the capacity 

of the treatment to deworm students

Note: Compare equations for NIE, NDE, and TE above. 

deworming students. Finally, 5.8% of the effect on attendance is owed to the capac-
ity of the treatment to deworm students.11

How do we make sense of these numbers?
Humphreys (2015) documented and commented on the worm wars in close 

detail, driven by concerns for the mechanistic element of the study. He points to 
several important aspects that can be learned from the documentation of the experi-
ment. Based on background information and the skeptical comments of epidemiolo-
gists, we might add several pathways between treatment and outcome (see Fig. 6.9). 
The causal graph reveals that the estimate above of the natural indirect effect is not 
identified. There is nothing identified in this system of pathways because too many 
nodes are unobserved. Let us briefly describe the pathways in Fig. 6.9.

One element of the treatment is the drug intake that seems to effectively de-worm 
students. The effect of de-worming alone is relatively weak, as the path analysis in 
Table 6.1 confirms. The drug intake has as least two more effects on attendance that 
cannot be isolated given the existing data. De-wormed students create spillovers, 
and spillovers might feedback to the treated. This feedback is problematic because 
it undermines the assumption of the independence of the treatment group and the 
control group – the problem that compelled resorting to cluster randomization in the 
first place.

Beyond spillovers, the drug intake can create placebo effects. Students feel better 
because of the drug, irrespective of being de-wormed, which might increase school 

11 An alternative way of modeling these numbers would be to use readymade packages in software 
such as R or Stata. In Stata, you would use the model builder and simple graph the mediation 
model. After the estimation of all path-coefficients, the effects can be decomposed into total, 
direct, and indirect effects using the teffects command (see Bollen, 1989; Sobel, 1987). Note that 
this command still assumes linearity and leads to biased estimates in this case.
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Fig. 6.9  Mechanisms in the worm wars

attendance. Since the control group was not treated with a placebo, we cannot esti-
mate the placebo effect. More worrisome is how the research group treated the treat-
ment group beyond the drug intake. The documentation files list health lectures, 
wall charts in the schools, training of teachers in the treatment schools, encourage-
ments of the treated students for handwashing, wearing shoes, and avoiding fresh-
water (see Hicks & Nekesa, 2014, 7).12 This extensive treatment had obvious health 
effects – including a contribution to de-worming – which suggests that the treated 
students likely became well aware of being subject to an encompassing treatment 
package. Thus, at least three more paths follow from that treatment beyond 
drug intake.

First, the educational elements on health issues might have affected the well-
being of students besides de-worming, which raises their probability to be present 
in school. Second, being so obviously treated might activate the Hawthorne effect, 
the rising willingness of participants to make the experiment a success in light of the 
efforts experimenters provided for the treated. For example, teachers might just 
encourage students in the treatment group to show up because they know that school 
attendance is an important measure (although it has to be noted that the measure-
ment of school attendance was achieved by surprise visits). Third, health education 

12 The educational treatments at the school level were part of a separate intervention of the same 
NGO and could in principle be controlled based on the data (see Hicks & Nekesa, 2014, 5). In fact 
Miguel and Kremer condition on those interventions. They write “None of these programs involved 
health treatments for pupils, and given the cross-cutting design, are unlikely to complicate the 
identification of average treatment effects across PSDP program and comparison schools.” 
Nonetheless, in many specifications Miguel and Kremer (2004) control for assignment to assis-
tance through these other programs’. Only a page later, they write without considering any poten-
tial bias “[t]he educational component of the intervention focused on teaching children about 
avoiding the disease. Health educators explained the transmission vectors for different types of 
helminths [one of the relevant worm types] and also promoted hand-washing, wearing shoes, and 
avoiding contact with fresh water” (2014, 7).
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affects the likelihood of being de-wormed besides de-worming drug intake and 
school attendance. Accordingly, the effect of being de-wormed on school atten-
dance, including the spillover effects, is confounded. Knowing about the direction 
of the influence of health education (increasing de-worming and school attendance), 
the already weak indirect effect of de-worming via drug-intake on school atten-
dance is most likely biased upwards. This perspective reveals that the authors make 
strong mechanistic inference without ever quantifying the importance of their 
hypothesized mechanism and without noticing that the indirect effect cannot be 
precisely identified, given the observable data at hand.

Such a mechanistic perspective also reveals the standing of the main criticism of 
the epidemiologists. The Cochrane reviewers classified the study as very weak in 
terms of evidence, predominantly because of the lack of placebo treatment of the 
control group. Indeed, except for the spillover path, all alternative paths between 
treatment and outcome could have been closed by placebo treatment. The consider-
ation also applies to the educational health elements.

Thus, the mechanistic view qualifies the inference of this landmark study sub-
stantially. First, there is a confirmation of a significant indirect effect running from 
the treatment over being de-wormed to higher school attendance. However, this 
indirect effect explains a very marginal part of the increased school attendance. Way 
more important are the indirect effects triggered by the entire treatment package 
beyond the ability to de-worm students. The rise in school attendance is predomi-
nantly a composite of different pathways from the Hawthorne pathway over the 
health education pathway to a potential placebo pathway, combined around 54 
times more powerful for school attendance than the de-worming effect. The overall 
inference to recommend the distribution of cheap drugs might be replaced by the 
recommendation to offer supposedly more expensive health education.

To be very clear about it, the study of Miguel and Kremer is comparatively well-
executed and deserves to be praised for the logic of cluster randomization alone. 
Nonetheless, the mechanistic view on this experiment demonstrates that randomiza-
tion does not allow for mechanistic inference. While the total effect of the treatment 
package might still be perfectly identified, the mechanistic view helps identify 
which elements of the treatment have created more or less powerful pathways to the 
outcome. It is extremely interesting to know how much Hawthorne, placebo, or 
health education contributed to the substantial rise in school attendance, as such 
effect decomposition can help to improve similar experiments in the future. Like in 
the lemon-scurvy example, experimenters need to disable these alternative path-
ways (exclusion restriction) for getting to the correct inference.

A mechanistic view may help to understand supposedly strong effects in well-
executed experiments. Moreover, it can reveal causal mechanisms where experi-
ments seem to yield nothing.
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6.5.2 � A Mechanistic View on a Chicago School Reform

In 1998, US secretary of education, William Bennet, called Chicago’s public school 
the worst of the nation. However, several reforms in the late 1990s moved them 
from the worst to ‘innovators of the nation’.13 One of the core reforms involved a 
program called ‘Algebra for All’, compulsory prep courses for ninth graders in high 
school. At first sight, the program seemed a success as math scores rose signifi-
cantly. However, the qualification of incoming ninth-grade students was already 
improving due to changes in the K-8 curriculums (an important confounder). Once 
controlled for this confounder, the reform turned out to be insignificantly related to 
the math performance of ninth graders. Here, the story would have typically found 
its end.

Luckily, Professor Guanghei Hong remained curious because she knew that 
when Algebra for All was introduced, more than the curriculum changed. The 
lower-achieving students found themselves in classrooms with higher-achieving 
students and could not keep up. Detrimental effects for students and teachers caused 
by mixed classes compared to remedial classes are well-known. In short, Mrs. Hong 
was suspicious of the unanticipated side effects of the treatment package. Testing 
the classroom environment as a mediator between reform and outcome clearly 
showed that this pathway had negative consequences. Once taken into consider-
ation, the direct effect turned positive. The lesson seemed clear: removing the mixed 
classes and keeping the prep courses was the logical consequence and created a 
success story of the modified Algebra for All program.

Students in Chicago significantly benefited from a mechanistic view on an edu-
cation program that has, at first sight, falsely been considered a failure. We learn 
from this example that different mechanisms can cancel each other out (“opposing 
mediation” as in Kenny [1998]), which demonstrates that even a null finding based 
on a randomized treatment can be worth considering with closer scrutiny on the 
level of mechanisms. The Algebra for All example is similar to the discredited 
causal link between lemons and scurvy prevention, although its revitalization took 
place in a substantially shorter period.

6.6 � Thou Shall Not Raise Causal Illusions

Scholars of pathways have revolutionized our view on causal identification. The 
counterfactual perspective on pathways reveals that fundamental problems of cau-
sality – asymmetry and confounding – can logically be solved by closing either the 
back- or the front-door. This perspective embraces conventional counterfactual 
causal inference such as randomization or quasi-experiments. Causal graphs help to 
make its logic and assumptions very transparent. Applying the logic of the 

13 One of its inventors, Arne Duncan, became secretary of education under Barack Obama.
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back-door to generally defined causal mechanisms reveals two things. First, con-
ventional approaches are ill-suited for identifying causal mechanisms as they can 
mistake their structure. Pathway analysis solved that issue by focussing on indirect 
effects. This perspective reveals that causal mechanisms can be quantified by non-
parametric comparisons of observable with counterfactual probabilities. To lend 
these numbers a causal meaning depends on a simple assumption: path estimates in 
a system of pathways must be unconfounded.

This unconfoundedness can unfortunately not be fully ensured by randomiza-
tion – although the randomization of the treatment helps a lot to block all paths 
running into the candidate cause. Moreover, causal mechanisms can only be identi-
fied if a theoretically exhaustive causal system is given and all confounders are 
observed and conditioned on. Based on a theoretically defined causal system, effec-
tive strategies of de-confounding can be determined. The complexity of the task 
becomes apparent when we remind ourselves of the problem of the collider bias. 
The collider bias is an instance of a single confounded path in a system of pathways, 
leading in the worst of events to completely misleading estimates of the indirect and 
direct effects – such as when smoking mothers are understood to increase the sur-
vival rate of their children. Besides, complex pathways with sequences of many 
mediators can complicate the identification task and the chances for false inference 
multiply.

The pathways perspective on the identification of causal mechanisms is logically 
simple. However, mechanisms can only be identified given a theoretically exhaus-
tive causal system where all the variables required to close the back-doors are mea-
sured, free of error, and conditioned. Empirically, these assumptions are hard to 
meet. Thus, research relying on pathways or causal mechanisms should avoid creat-
ing the causal illusion that the back-door criterion will easily tackle identifica-
tion tasks.

The greater strength of the pathway approach is not to deliver a readymade tool 
for causal inference but a perspective that can boost the transparency over what is 
needed to identify a mechanism causally. It complements standard approaches of 
causal inference that typically seek to identify total effects. Analyses of mechanisms 
searching for indirect effects ask a deeper form of why. Preliminary answers to 
these deeper questions can at times be very generic, such as a single mediator con-
necting cause and outcome, and at times can also span to very complex systems of 
pathways. However, even the most generic mechanism can reveal a great deal. 
Thinking of lemons’ ability to prevent scurvy, smoking mothers to decrease the 
survival rate of their children, the capacity of de-worming to increase school atten-
dance or preparation courses to improve school performance. In all examples of this 
chapter, evidence on a single mediator considerably qualified the inference of a 
cause–effect relationship.

Despite the capacity of a mechanistic view to qualify the inference of even well-
executed experiments, the added values are complementary. Randomized treat-
ments facilitate the identification of causal mechanisms because important sources 
of confounding are erased by design. Mechanisms, in turn, improve the exercise and 
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inference on well-executed experiments too. The more we know about the mecha-
nisms, the better we can identify total effects.

Suggested Readings
There are three books of great help to understand causal mediation. The most 
encompassing work on causal mediation analysis, including moderated mediation, 
is most likely VanderWeeles’ book Explanation in causal inference: methods for 
mediation and interaction, published in 2015 by Oxford University Press. Although 
probably the most encompassing, it addresses the issue from the perspective of bio-
statistics. Easier access to causal mediation can prove Chapter 9 on Mediation: The 
search for a mechanism in Pearl and Mackenzie (2018), published by Basic Books. 
The entire textbook can be highly recommended to cast light on recent develop-
ments in causal identification against the background of the history of statistics. 
Finally, Chapter 10 on Mechanisms and causal explanation in Morgan and Winship 
(2015) lies somehow in between VanderWeeles’ equation-based insights and Pearl 
and Mackenzie’s captivating narrative. Their entire book on Counterfactuals and 
causal inference can be recommended, as it covers virtually all causal identification 
tasks from the perspective of the social sciences while preserving a deep commit-
ment to graph theory and counterfactual thinking.

Helpful Websites
Beyond books, there are two highly informative websites on causal mediation. The 
one by David Kenny provides regular updates on mediation analysis and also cov-
ered issues in causal mediation (http://davidakenny.net/cm/mediate.htm). 
Alternatively, Columbia University provides information on causal mediation, 
including a recorded lecture of VanderWeele based on the Harvard Seminar Series 
in Biostatistics (https://www.publichealth.columbia.edu/research/population-
health-methods/causal-mediation#websites).

Software Recommendations
Causal mediation, the identification of mechanisms, or causal pathway analysis are 
relatively new and characterized by rapid development. Formulas, methods, and 
software applications change accordingly. Nonetheless, several software packages 
have proven extremely useful.

	1.	 R mediation package (Tingley et al. 2014):

–– the mediate() function estimates the natural direct and indirect effects based 
on Pearl’s mediation formula,

–– X-M interaction may be conducted by the function test TMint() (significant 
finding implies that the no X-M interaction assumption does not hold).

–– the sensitivity analysis function medsens() allows for investigators to exam-
ine, through simulations, the robustness of their findings to potential unmea-
sured M-Y confounders.

Results for all analyses are displayed using the summary() and plot() functions
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	2.	 SAS macro:

–– The SAS macro is a regression-based approach to estimating controlled direct 
and natural direct and indirect effects.

–– The macro can handle virtually every distributional and link assumption 
(compare Valeri et al., 2013).

	3.	 Stata:

–– paramed package (no sensitivity analysis) (Emsley et al., 2013).
–– ldecomp (no sensitivity analysis) (Buis, 2010).
–– medeff (sensitivity analysis) (Hicks and Tingley, 2011).
–– gformula (helpful in case of post-treatment and time-varying confounding) 

(Daniel et al., 2011).

Review Questions
	1.	 Under which conditions can mechanisms be causally identified?
	2.	 What is a natural indirect effect in comparison to a controlled indirect effect?
	3.	 Why randomization might identify cause-effect relationships but not neccessar-

ily indirect effects?
	4.	 Why might conventional mediation analysis be misleading for the causal identi-

fication of the mechanism?
	5.	 How does mechanistic evidence help to improve the implementation of 

experiments?
	6.	 What are the consequences of treatment-mediator interactions for the identifica-

tion of mechanisms?
	7.	 What are the limits of mechanistic causal identification?
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Chapter 7
Testing Joint Sufficiency Twice: 
Explanatory Qualitative Comparative 
Analysis

Alessia Damonte 

Abstract  Standard Qualitative Comparative Analysis (QCA) applies an elimina-
tive cross-case algorithm to identify which combinations of factors are logically 
associated with an outcome in a population. As such, it suits the purpose of pin-
pointing the conditions under which an outcome occurs or fails. However, the 
explanatory import of its findings only follows if the algorithm identifies theoreti-
cally interpretable, logically valid, and empirically plausible causal compounds.

The chapter provides an essential guide to designing an explanatory QCA that 
meets the three credibility requirements at once. Section 7.2 addresses how to 
develop starting hypotheses consistent with the assumptions of complex causation 
to preserve theoretical interpretability. Section 7.3 introduces the Boolean algebra 
required to model a hypothesis and find which part supports the explanatory claim 
in the cases at hand. Section 7.4 addresses the issue of gauging conditions to ensure 
the empirical plausibility of the analysis. Last, Sect. 7.5 summarizes the protocol, 
illustrated by the replicable example in the online R file.

Learning Objectives
After studying this chapter, you will be able to:

•	 Understand causation in terms of individual necessity and joint sufficiency of 
many factors.

•	 Develop a configurational hypothesis.
•	 Apply Boolean algebra to formalize configurational hypotheses and establish 

criteria of fit.
•	 Gauge factors as sets that are suitable to logical formalizations.
•	 Identify and discuss credible configurational solutions.
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7.1 � Introduction

Qualitative Comparative Analysis (QCA: Ragin, 1987/2014, 2000, 2008; Duşa, 
2019; Oana et al., 2021; Mello, 2021) stands amid the suite of causal techniques for 
three main reasons that drive as many questions.

First, QCA moves from the default assumption that causation lies in compounds 
or teams of conditions. Its solutions entail that things happen when all the “right” 
conditions are given together, like in a chemical reaction (Mackie, 1965, 1974; 
Cartwright & Hardie, 2012). The first question of explanatory QCA asks how to 
ensure that results are interpretable “recipes” for the outcome.

Second, QCA originally revolves around a pruning algorithm. It compares configu-
rations that meet regularity requirements of association with an outcome to drop irrele-
vant conditions, along the lines of a most-dissimilar case design (e.g., De Meur & 
Berg-Schlosser, 1994), albeit run twice. The second question asks how the technique 
can be geared toward pinpointing valid causal compounds despite the shortcomings of 
such a design (e.g., Geddes, 1990; Most & Starr, 2015; Krogslund et al., 2015).

Third, QCA’s solutions hold at the levels of both the population and individual 
cases. Such a peculiarity is based on gauging operations that preserve quantitative 
and qualitative information. These operations are an integral part of the analysis and 
bind findings to analytic units. The third question asks how these operations affect 
the tenability of solutions.

These three questions are addressed in Sects. 7.2, 7.3, and 7.4, respectively. 
Section 7.5 summarizes the protocol illustrated by the online R file.

7.2 � Interpretability

The recognized hallmark of QCA lies in its assumptions that causation is an asym-
metric, conjunctural, and equifinal phenomenon (Ragin, 2008; see also Rosenberg 
et  al., 2017). Asymmetric means that causation has a direction and proceeds from 
“causes” to “effects” as a relationship of dependence or conditionality ahead of tem-
poral considerations. Conjunctural refers to the first reason for asymmetry: the actual 
cause is a compound and consists of a team, bundle, or package of contributing fac-
tors. Equifinal recalls the second reason for asymmetry: different compounds can 
yield the same outcome. These assumptions chime with mechanistic considerations 
on the ultimate shape of causation (e.g., Befani, 2013; Mahoney, 2021; Chap. 2).

7.2.1 � Mechanisms and Machines

QCA assumes that the factors responsible for an outcome are many and related to 
each other as the constituting parts are to their whole. Moreover, it allows fac-
tors have substitutes without loss of effectiveness for the causal compound (Mackie, 
1966; Cheng, 1997; Cartwright & Hardie, 2012).
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The textbook illustration of such a parts-to-whole relationship offers heat, oxy-
gen, fuel, and defective or no sprinklers as the compound accounting for fire. These 
circumstances provide the complete set of relevant conditions under which the pro-
cess of combustion must initiate (Salmon, 2020). Thus, they form a causal team 
based on the process that they explain.

The process also clarifies the general relationship between components, teams, 
and outcomes. In the textbook example, combustion results in a fire when the whole 
team of circumstances is given in the same place and the right state—present heat, 
fuel, oxygen; absent or defective sprinklers. The surefire or sufficient cause of the 
outcome is the right bundle. However, the right circumstances can take many actual 
shapes. For instance, a lightning bolt, a short circuit, or a lit match can all be equiva-
lent sources of heat. Any actual bundle, then, is unnecessary as such. Besides, the 
process fails when any circumstance is given in the wrong state—poor oxygen, no 
fuel, or no heat all prevent combustion, while a working fire system suffocates it. 
Any element of the compounds, then, is a counterfactually vital—and hence, neces-
sary—component of the team, despite it alone being insufficient to yield the out-
come. The elements of the compound are “partial causes” or “inus conditions”—inus 
being the acronym of the Insufficient but Necessary part of an Unnecessary but 
Sufficient team.

Bundles of inus conditions seldom capture a generative process directly (see 
Chaps. 8, 9, and 10). Instead, they can capture the set of right circumstances as 
“nomological machines”—that is, as “sufficiently stable” arrangements of trigger-
ing, enabling, sustaining, and shielding conditions underlying the generative pro-
cess (Cartwright, 1999: 49, 2017). A nomological machine is such that its 
components together make other factors irrelevant before the same type of outcome 
across time and space. Therefore, a nomological machine is the specified explana-
tion of a regular behavior independent of the remaining context (Craver & Kaplan, 
2020). Moreover, it provides the theoretical construct that affords counterfactual 
evidence about the contribution of single components across cases.

7.2.2 � Operationalizing Typological Theories

Typological theories provide a renowned starting point for developing configura-
tional explanations (e.g., Elman, 2005). Such theories prove especially fruitful as 
they enable modeling of the alternative causal bundles as different settings of the 
same factors.

Some theories are consistent “explications” of a driving concept. For instance, 
Pahl-Wostl (2008) takes “regimes” as the driving concept. She defines water man-
agement regimes as the alignment of governance style, type of sectoral integration, 
scale of analysis and operation, information management, plus finance and risk 
management. Huntjens et  al. (2011) operationalize the setting of these structural 
dimensions for two polar types of regimes—the “market-based” and the “integrated 
adaptive”—then run a QCA to establish the features that account for the diversity in 
the policy-learning capacity of water management systems when faced with climate 
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change challenges. In a similar vein, Colby (1991) builds on the concept of “policy 
paradigms.” He stipulates that the compatibility of environmental and economic 
policy goals depends on the alignment of policy ideas and policy tools. Thus, “fron-
tier economics” and “deep ecology” establish the trade-off between economic 
growth and environmental preservation, while “environmental protection,” “resource 
management,” and “eco-development” make room for their coexistence and inte-
gration. Damonte (2013) operationalizes these alternative paradigms as different 
settings of the same bundle of policy tools and identifies the configurations that 
account for the green decoupling of economic growth from pollution.

Other configurational hypotheses integrate heterogeneous streams of literature 
into a consistent explanatory whole. For instance, Sabatier and Mazmanian (1980) 
reason that the many accounts of the success and failure of policy implementation 
can be reduced to the consistent interplay of three dimensions: problem tractability, 
administrative effectiveness, and political support. Hinterleintner et al. (2016) oper-
ationalize the components of each dimension and run a QCA that explains the dif-
ferences in the IMF’s evaluation of austerity programs as differences in the 
credibility of national implementations. Theoretical integration can also be pur-
posefully operated within the study. As an example, Lauri et al. (2020) integrate 
theories linking the defamiliarization of care work and gender equality with theories 
on the gender division of labor as embedded in different types of welfare systems. 
On this basis, they provide a thorough operationalization of childcare policies as 
bundles of tools that enforce different gender norms. QCA is applied to identify 
which tools, linked to the norms of which type of welfare system, yield high gender 
equality and which endanger the goal instead.

7.2.3 � Assembling Configurational Hypotheses

A configurational hypothesis can also be crafted after a reasoned selection and inte-
gration of statistical “determinants.” Surveys of scholars’ practices (Amenta & 
Poulsen, 1994; Berg Schlosser & De Meur, 2009) pinpointed four selection strate-
gies. The “comprehensive approach” includes all the factors from all the relevant 
theories; the “perspective approach” selects single variables that represent major 
theories; the “significance approach” only focuses on statistically significant vari-
ables; the “second look” approach mixes statistically significant variables with the-
oretically meaningful factors that did not survive those same tests.

However, none of these strategies is proven to yield proper configurational 
hypotheses unless the selected factors can be related to the unfolding of a generative 
process as actors’ constraints and opportunities. To witness, Stiller (2017) explains 
governments’ success in adopting major welfare reforms as the interplay of policy-
makers’ strategies—identified in ideational leadership, concession making, and 
blame avoidance—with key background features that make these strategies ade-
quate—namely, the stage of the election cycle and the government’s position toward 
the national welfare system. Similarly, Ansell et al. (2020) account for stakeholders’ 
participation in collaborative governance as the result of motivations—that is, 
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perceived incentives, interdependence, trust, and purpose—and governance’s sup-
port of motivations—through leadership services, opportunities to build relation-
ships, and structures for pooling information.

A configurational hypothesis may also follow from problematizing correlational 
theories. Kogut and Ragin (2006) focus on the theory linking high economic devel-
opment, thriving financial markets, and common law institutions. The configura-
tional hypothesis develops from the consideration that the causal chain is 
underspecified. National economies, they reason, may still thrive despite poor finan-
cial markets if legality is ensured. Moreover, the effectiveness of common law insti-
tutions beyond their original contexts depends on their interplay with existing legal 
traditions. Thus, they run two QCAs that employ common law, features of the insti-
tutional “transplant,” and commitment to the rule of law to account for differences 
in GDP per capita and, separately, in the dimension of the domestic financial mar-
kets, to check whether the two explanations overlap.

In short, the fundamental criterion for selecting an interpretable candidate inus 
factor is functional. It consists of whether one can develop directional expectations 
about the factor’s contribution to the setting that compels and protects some causal 
process of interest. The expectation should support the claim that, were the factor 
given in the right state and in the right team, the process to the outcome would cer-
tainly follow. As we will see in Sect. 7.3.2, these directional expectations play a 
crucial role in the analysis  as they establish the plausibility of counterfactual 
assumptions.

7.3 � Validity

The validity of inferences about inus hypotheses depends on the algebra deployed 
to make them testable. Such a suitable algebra should allow factors to

•	 Have observable states, such as presence and absence;
•	 Form compounds as configurations of states;
•	 Have equifinal alternatives;
•	 Establish relationships of dependence.

Boolean algebras can easily render these states and relationships. Introduced as 
primary devices to analyze human reasoning about the world (De Morgan, 1847; 
Boole, 1853), their structures support a twofold reading (Stone, 1936)—logical, and 
set-theoretical.

7.3.1 � QCA’s Algebra

Like any other, QCA’s algebra is a language of literals and operators suitable to 
render complex relationships according to fundamental rules.
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7.3.1.1 � Literals

Boolean algebras use “literal symbols” to indicate factors as attributes or states of a 
unit of observation. A literal stands for a name or an adjective denoting “either a 
thing or some quality or circumstance belonging to it” (Boole, 1853:27). QCA bor-
rows the convention and indicates a state with an uppercase letter. Thus, A reads ⌜A 
present⌝ or ⌜A positive⌝ or the predicate ⌜is A⌝. The literal provides an empty place-
holder for whatever attribute we consider as the candidate inus condition—such as 
“inflammable” referred to a material; “hierarchical” to a governance structure; 
“affluent” to a society; “independent” to a voter.

Once defined, a literal establishes the similarity of any units of observation 
ui to which it applies. In Boole’s original proposal, and all the basic operations 
of QCA, such a recognition raises a class, that is, an idempotent collection of 
units. Idempotency means that, in contrast to probabilistic samples, classes 
satisfy the logical rule dubbed dictum de omni: that which can be said of the 
whole, it also holds for each of its parts. Boole renders idempotency as in 
Eq. (7.1):

	 A A2 := 	 (7.1)

where ≔ indicates a stipulation and reads ⌜is by definition equal to⌝. As the only two 
numerical values that satisfy the stipulation are 1 and 0, Boole’s literals can only 
take these two values—and the basic operations in QCA share this bivalent assump-
tion, too.

These values convey two separate readings of the relationship between a unit and 
a literal:

•	 When the literal is understood as a predicate, 1 and 0 are the truth values that a lit-
eral can take in the actual unit ui from the universe of discourse  � � �u uN1, , . 
1 reads ⌜true⌝ for ⌜it is the case that⌝, while 0 reads ⌜false⌝ for ⌜it is not the case that⌝.

•	 When the literal is understood as a class, 1 and 0 are read as membership values. 
Thus, Ai = 1 means that the i-th unit belongs to class A, while Ai = 0 indicates that 
the same unit does not belong to it.

The logical understanding captures the literal as the intension or quality of a unit. 
In contrast, the set-theoretical understanding captures the literal as the extension of 
the quality across the units in a universe. Operationally, the intension is decided by 
gauging rules—for instance, on defining which manifestations and intensity make it 
true that a unit ⌜is A⌝. Extension, on the other hand, is decided by counting—for 
instance, the number of units in the universe that ⌜are A⌝, which corresponds to the 
cardinality of class A. In bivalent Boolean algebra, the two readings overlap, mak-
ing logical inferences especially straightforward.
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7.3.1.2 � Operators

The Boolean operators relevant to inus hypotheses correspond to the logical con-
nectives ⌜not⌝, ⌜and⌝, ⌜or⌝, ⌜only if⌝, ⌜if⌝ and the set-theoretical relationships of differ-
ence, intersection, union, and superset/subset.

Negation

The connective ⌜not⌝ denies the literal. The Boolean notation renders it with a bar 
above the uppercase literal to which it applies; in QCA, also common is the tilde 
before the uppercase literal, or the use of the lowercase literal. Thus, A A a, ,~  all 
read ⌜is not-A⌝.

The logical negation transforms a unit’s truth value into its opposite, calculated 
as in Eq. (7.2). The set-theoretical reading establishes the negation of a set is the 
collection of units that are excluded from that set. Therefore, the negated set A  cor-
responds to the difference (indicated by the backslash \) between the universe U and 
set A, as in Eq. (7.3):

	 A Ai i:= 1– 	 (7.2)

	 A A: \=  	 (7.3)

Equations (7.2) and (7.3) indicate that, by definition, a literal and its negation are 
mutual complements. The enforcement of this definition depends on gauging opera-
tions—an issue addressed in Sect. 7.4.

Joint Occurrence

These correspond to bundles of literals connected by the ⌜and⌝ operator. In logic, the 
operator is a wedge (∧); in set theory, it is a cap (∩). In QCA, the operator is a dot 
(⦁) or a star (∗) although the connecting symbol may be omitted.

Two implications are worth noting. Permutation and grouping are irrelevant to 
⌜and⌝ bundles: ABC  means the same as ACB  and A BC� �  as the resulting class 
clusters the same units. In short, the Boolean ⌜and⌝ supports the commutative and 
the associative rule. Therefore, bundles are blind to the time dimension of sequences; 
instead, they emphasize the joint occurrence or interaction of attributes in a unit.

Logically, the ⌜and⌝ operator raises a conjunction. The underlying rule estab-
lishes a conjunction as true when each of its conjuncts is true. The rule is also 
known as “the weakest link”: the conjunct with the lowest truth value defines the 
truth value of the compound.

7  Testing Joint Sufficiency Twice: Explanatory Qualitative Comparative Analysis



160

Applied to a single predicate and its negation, the rule renders the logical prin-
ciple of non-contradiction. As summarized by Eq. (7.4), the principle states that a 
predicate and its negation cannot be true of the same unit at the same time in the 
same sense. Set-theoretically, the principle is met when the intersection of a set and 
its negation is empty (∅), as in Eq. (7.5). The principle offers the first criterion of 
validity: it commits to rejecting inferences that build on, or lead to, contradictions.

	 A Ai� �: 0 	 (7.4)

	 A A� ��: 	 (7.5)

More generally, the weakest link of the i-th unit can be calculated as the mini-
mum of its truth values in any of the 1 ≤ j ≤ K conjuncts, as in Eq. (7.6):

	
� � � �A A Aij i iKmin , ,1 ... 	

(7.6)

Therefore, in a universe of N units, the cardinality of the intersection of the k 
literals of interest corresponds to the sum of the 1 ≤ i ≤ N units’ weakest links as 
in (7.7):

	
A A A

j i

N

i iK � � ��� min , ,
1 1 ... 	

(7.7)

Alternatives

These arise when literals are connected by the operator ⌜or⌝. In QCA, the operator is 
a plus symbol (+) and never omitted. Logic indicates it with a vee (∨); set theory 
with a cup (∪). Class idempotency makes permutation and grouping irrelevant to 
alternatives, too.

Logically, the ⌜or⌝ operator raises a disjunction. The underlying rule establishes 
the disjunction as true when at least one of its disjuncts is true. The rule can be 
dubbed “the strongest link”: the disjunct with the highest truth value defines the 
truth value of the whole compound.

Applied to a single predicate and its negation, the rule renders the logical prin-
ciple of the excluded middle. As summarized by Eq. (7.8), the principle states that, 
necessarily, either a predicate or its negation is true in a unit, so that the disjunction 
of the two raises a non-informative tautology. Set-theoretically, the principle is met 
when the union of the set and its negation returns the universe, as in Eq. (7.9).

	 A Ai i� �: 1 	 (7.8)

	 A A� �:  	 (7.9)
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More generally, the strongest link of the i-th unit can be calculated as the maxi-
mum of the truth values of any of the 1 ≤ j ≤ K disjuncts, as in (7.10):

	
� � � �A A Aij i iKmax , ,1 ... 	

(7.10)

Therefore, in a universe of N units, the cardinality of the union of the K literals 
of interest corresponds to the sum of the 1 ≤ i ≤ N units’ strongest links, as in (7.11):

	
A A Aj i

N
i iK � � � ��1 1max , ,...

	
(7.11)

Necessity and Sufficiency

The reliance of QCA on the assumptions of inus causation gives center stage to the 
concepts of necessity and sufficiency.

Mackie (1974) illustrates them with the different behavior of coin-operated 
vending machines. A “sufficiency machine” always drops a snack for a coin, and 
sometimes it drops one without apparent reason, too. A “necessity machine” never 
drops a snack without a coin, and sometimes the coin fails. Last, one and only one 
snack for each coin is the behavior of the perfect “necessity-and-sufficiency 
machine.” These intuitions capture both set-theoretical and logical relationships 
between an observed input, or antecedent (the coin), and an observed output, or 
consequent (the snack), connected by an unobserved—but possibly 
observable—mechanism.

As for notation, QCA indicates necessity with an arrow running from the 
outcome to the cause and sufficiency with an arrow running from the cause to the 
outcome. Thus, A → B reads ⌜A is sufficient to B⌝; A B←  reads ⌜not-A is necessary 
to not-B⌝.

Set-theoretically, the necessity of A to B corresponds to A being a superset of B, 
indicated as B ⊂ A. The relationship is satisfied when all the B are also A although 
there can be instances of A in the universe that do not display B. This corresponds 
to the logical situation in which being B implies being A or, more compactly, ⌜B, 
only if A⌝. The hallmark of necessity is the impossibility of the outcome in the 
absence of the factor, as in (7.12). Set-theoretically, it means that the proof of the 
necessity of A to B in the universe comes from the empty intersection in (7.13).

	 A Bi i� � 0 	 (7.12)

	 A B� �� 	 (7.13)

Set-theoretically, the sufficiency of A to B corresponds to A being a subset of B, 
indicated as A ⊂ B. The relationship is satisfied when all the A are also B. In short, 
sufficiency renders the intuition of A as the constant antecedent condition of 
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B. Logically speaking, it corresponds to saying that, for any ui, ⌜B, if A⌝ without 
exceptions. The hallmark of sufficiency coincides with the impossibility that the 
outcome fails when the factor is present, summarized by requirement (7.14) and its 
set-theoretical translation (7.15):

	 B Ai i� � 0 	 (7.14)

	 B A� �� 	 (7.15)

7.3.1.3 � Truth Tables

Stipulations and rules construe valid logical inferences as the calculus of truth val-
ues, visualized with the aid of a truth table. These tables clarify the possibilities that 
the selected literals make available ahead of observation. Logic sees it as the exhaus-
tive catalog of the combinations of the literals’ truth-values (Wittgenstein, 1922). 
Probabilistic theories dub such a structure “sample space” and understand it as the 
list of the potential events from random trials (e.g., Clarke, 2020). In any case, this 
structure reports the maximum diversity that units can display given specific literals 
and gauges.

The truth table entails a fundamental sense-making operation (Quine, 1982); 
thus, in it, each combination of the literals’ truth values can be dubbed a primitive. 
The number of primitives depends on the number of literals and truth values under 
consideration; K bivalent literals yield 2K unique primitives. In the remaining, a 
truth table will be indicated as Ω and its primitives as ω.

The shape of truth tables follows conventional rules. The primitives are listed as 
rows: ω1 displays all true literals; ω

2K
,  all false ones (cfr. Duşa, 2019). Each of the 

remaining columns in the classical truth table is for the truth function of a connec-
tive, i.e., the truth values that each primitive returns when the connective’s rule is 
applied to the states of its literals.

Table 7.1 displays a truth table of two literals (A, B) and five operators to indicate 
as many relationships—respectively, of conjunction (and), disjunction (or), neces-
sity (only if), sufficiency (if), plus necessity and sufficiency (iff).

The values in the truth functions of each operator indicate the type of units that 
will (1) and will not (0) be observed if the relationship holds in the universe of refer-
ence (Sprenger, 2011). These expectations inform the discourse on the threats to the 
validity of inferences that are currently addressed by either design (e.g., Chap. 3) or 
model (e.g., Chaps. 6 and 8, Sect. 7.3.2 below).

•	 The and truth function follows from the application of the weakest link rule as in 
Eqs. (7.6) and (7.7) and returns a single true point in correspondence with the 
matching primitive (ω1 in Table 7.1). Thus, evidence of a conjunction is only 
provided by the units displaying every conjunct in the right state.
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Table 7.1  Truth table of two literals and five operators

Ω A B A and B A or B B, only if A B, if A B, iff A

ω1 1 1 1 1 1 1 1
ω2 1 0 0 1 1 0 0
ω3 0 1 0 1 0 1(*) 0
ω4 0 0 0 0 1 1 1

Note: (*) observing this primitive makes the statement of sufficiency vacuously true

•	 The or truth function follows from the strongest link rule as in Eqs. (7.10) and 
(7.11) and always returns a single false point, corresponding to the primitive with 
no matching values (ω4 in Table 7.1). It conveys that any unit displaying at least 
one disjunct in the right state provides evidence of a disjunction.

•	 The only if truth function has a single false point corresponding to the impossible 
primitive established by Eqs. (7.12) and (7.13). It shows that the relationship of 
necessity is only inconsistent with evidence of the consequent B occurring in 
some units where the antecedent A is missing (ω3 in Table 7.1). Therefore, the 
logical relationship of necessity assumes the antecedent A is not substitutable, as 
is oxygen to fire.

•	 The if truth function has a single false point in the impossible primitive defined 
by Eqs. (7.14) and (7.15). It shows that the claim of sufficiency is only inconsis-
tent with evidence that the consequent fails under the antecedent in some units 
(ω2 in Table 7.1). The logical relationship of sufficiency is the regular connection 
of antecedent and consequent. When the actual cause is composite, the require-
ment can only be satisfied by the antecedent that comprises all the components 
of a compound—including the factors that shield the causal process from 
obstructions. Section 7.4.2 will suggest a strategy for construing suitable shield-
ing factors.

A further note is due about the starred value of ω3 in Table 7.1. The instances of 
this primitive do not contradict the claim of sufficiency after the principle that ex 
falso quodlibet—meaning that anything can follow in the units where the anteced-
ent is missing or otherwise false. However, units of this type provide vacuous evi-
dence about the relationship (e.g., Salmon, 2020), as they may

	(a)	 point to its nonsensical nature. The evidence that Socrates is not a triangle yet 
is a philosopher makes the claim vacuous that “if Socrates is a triangle, then he 
is a philosopher.”

	(b)	 divert attention from the conditionality of interest. Evidence about salt that is 
not put in water is irrelevant to establish the claim that “if salt is put in water, 
then it dissolves.”

	(c)	 unveil some spurious relationship or incomplete explanation. The evidence that 
the barometer reads “storm” during a sunny day makes the claim vacuous that 
“if the barometer reads ‘fair,’ then it is a sunny day.”
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Although the exact meaning of a vacuous observation depends on the interpret-
ability of the relationship of interest, it nevertheless makes the problem visible as a 
formal issue of validity.

•	 The iff relationship arises from the conjunction of the truth functions of necessity 
and of sufficiency. It indicates the identity of the two literals and the overlapping 
of the respective classes of units in the universe. Thus, the truth function has two 
false points. In Table 7.1, these correspond to ω2 and ω3. In short, evidence of any 
inconsistency in the covariation of the two states challenges the validity of the 
identity.

QCA does not deploy logic, truth tables, and truth functions normatively. Instead, 
it relies on them as modeling tools and heuristics for the analysis.

7.3.2 � Identifying Valid Inus Hypotheses

Logic provides scaffolding and criteria to render an inus hypothesis first, then decide 
whether it is rightly specified to the universe under analysis.

7.3.2.1 � Rendering Hypotheses

Logic renders an inus hypothesis as a theoretically meaningful yet unwarranted 
claim about the sufficiency of a conjunction of K conditions to the occurrence of the 
outcome Y, as in (7.16)

	
 j

K
jA Y� �1 	

(7.16)

The formula means that ⌜were it the case that these K conditions together make 
an inus machine, then the outcome should certainly occur in an ideal instance dis-
playing them all  in the right state, and fail otherwise⌝. For it to hold, the starting 
hypothesis should contain the sufficient bundle to the positive and the negative out-
come, which may have different specifications. QCA acknowledges this fact and 
addresses the positive and the negative outcomes in separate analyses. Nevertheless, 
the two sets of findings are related as long as both follow from the same truth table 
in which primitives are exclusively assigned to one outcome, and no contradiction is 
detected.

The value of an explanatory QCA lies in identifying the plausible bundle beneath 
the success and failure of an outcome in the population of interest, to define the ten-
ability of the starting hypothesis and its underlying theory. Its identification proce-
dure addresses validity issues as the underspecification or the overspecification of 
the starting hypothesis.
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7.3.2.2 � Tackling Underspecification

QCA deploys truth tables as a diagnostic device for detecting underspecification. 
Therefore, QCA’s truth tables are partially different from those of logic.

A QCA’s truth table contains as many columns as inus conditions in the hypoth-
esis, plus one for the outcome and at least three additional columns for as many 
parameters of fit. The truth value of the outcome is the last column to be filled, 
depending on the researcher’s decisions about the parameters, as follows:

Decision 1: Frequency Cut-Off

This parameter establishes whether a primitive is observed or realized in the uni-
verse of reference based on the minimum number of its “best instances” (Ragin, 
2008). A unit is the best instance of the primitive in which it gets a membership 
scorehigher than 0.5 according to the weakest link rule (7.6).

Units’ classification yields two kinds of primitives: observed or realized, and 
unobserved or unrealized. The unrealized ones are also known as logical remain-
ders and constitute a common occurrence. Although the ratio of units to conditions 
inevitably plays a role in raising them (Marx & Duşa, 2011), their number is rela-
tively independent of the richness of the hypothesis or the size of the universe. 
Instead, the logical remainders expose the limited diversity of the units under analy-
sis and serve as a source of counterfactual reasoning (Ragin, 2008; see below).

The researcher’s decision regarding the frequency cut-off may also increase the 
number of unrealized primitives. Conventionally, one best instance is enough to 
declare a primitive realized albeit rare. However, the frequency cut-off can be raised 
if the numerosity of the population and the gauging strategy suggest a risk of errors 
in units’ classification.

Decision 2: The Consistency Threshold

The second of the researcher’s decisions on the truth table for a QCA concerns the 
assignment of the realized primitives to either the positive or the negative outcome. 
In Standard QCA, the decision mainly follows considerations on consistency.

In line with consolidated axiomatizations (Hájek, 2011), QCA captures the con-
sistency of the sufficiency of each primitive to an outcome (S.cons for short, also 
known as incl for “inclusion”: Ragin, 2008; Schneider & Wagemann, 2012; Duşa, 
2019) as an extensional gauge that checks for empirical violations of the impossibil-
ity requirement in (7.15) through the ratio in Eq. (7.17):

	

S cons
Y

Y.
*

*

*
�

�
�� �


	

(7.17)
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The vertical bars indicate the size of a partition. The denominator of the ratio is 
for any antecedent of interest—otherwise understood as the number of trials—and 
here corresponds to the primitive of interest. The numerator is for the number of 
successful trials, that is, the intersection of the primitive with the outcome. When 
none of the N units under analysis qualifies as an instance of the inconsistent inter-
section ω*Y , the numerator overlaps the denominator, and the S.cons gets its high-
est value of 1.00, which supports the claim that ω* is sufficient to Y. The lower the 
overlapping, the lower the S.cons parameter and the credibility of the claim of 
sufficiency.

The detection of critical inconsistencies justifies the dismissal of the hypothesis 
in the current shape as incomplete or otherwise misspecified (e.g., Rihoux & De 
Meur, 2009; Rohlfing, 2020). The textbook illustration comes from a configura-
tional model applying Lipset’s socioeconomic theory of democratization to account 
for the breakdown of democracy in Europe between the two World Wars. The model 
yielded a straightforward truth table with a single remarkable contradiction: the 
German case displayed all the socioeconomic conditions for a thriving democracy, 
but it experienced a clear regime breakdown. The contradiction disappeared after 
adding institutional conditions of government stability to the model.

The researcher’s decision concerns the value of the S.cons below which the 
inconsistency is severe enough to preclude the assignment of the primitive to the 
outcome. An established convention suggests setting it at 0.85, although the range 
of S.cons values in the table may justify a different choice. An additional criterion 
considers “natural gaps”—that is, steep falls in the ordered series of the primitives’ 
S.cons values. These gaps may suggest setting the consistency threshold in between 
clusters of primitives.

The primitives not assigned to Y cannot be automatically assigned to Y . Instead, 
the consistency of each primitive has to be tested with both states of the outcome 
separately. Nevertheless, meaningful solutions can be expected when the realized 
primitives below the consistency cut-off to Y return high S.cons values to Y . This 
suggests that the starting hypothesis can account for both the occurrence and the 
non-occurrence of the outcome consistently.

Decision 3: The Coverage Cut-Off

The least common and last of the possible researcher’s decisions concerns the 
empirical import of the claim of sufficiency—how relevant the primitive is to the set 
of instances of the outcome of interest. The related parameter, dubbed coverage of 
sufficiency (S.cov for short) is calculated as in (7.18)

	

S cov
Y
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(7.18)
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When all the instances of a primitive ω* display the outcome, the numerator in 
(7.18) equals the denominator, and the parameter takes its highest value of 1.00 sup-
porting the claim that the primitive accounts for any unit with the positive outcome. 
But the empirical relevance of a factor to an outcome is the extensional gauge of its 
necessity in the cases at hand. Hence, the S.cov of ω* to Y gauges the consistency of 
necessity (N.cons for short) of the primitive to the outcome. Specularly, the S.cons 
of ω* to Y gauges the empirical relevance of the primitive as a necessary compound 
to the outcome—and hence counts as the N.cov of ω* to Y.

A primitive’s S.cov value decreases with the increase in the evidence that the 
outcome can occur without the primitive. Coverage cut-offs may be established to 
ensure the analysis is based on sufficient primitives that also are empirically rele-
vant. However, decisions driven by empirical relevance may prove unwise, as even 
rare primitives may contribute to specify the composition of inus machines.

7.3.2.3 � Tackling Overspecification

Overspecification depends on having included factors in the starting hypothesis that 
prove irrelevant to account for the units’ diversity.

The issue arises as mistaking some features for an inus component entrenches 
solutions in very specific contexts and unnecessarily reduces their portability (e.g., 
Craver & Kaplan, 2020; Salmon, 2020; cfr. Álamos-Concha et al., 2021; Chap. 10).

The acknowledged sources of overspecification are twofold: irrelevant compo-
nents, and trivial factors.

Irrelevant Components

Quine-McCluskey’s minimizations provide the standard approach to irrelevant con-
ditions (Ragin, 1987/2014, 2000, 2008). These minimizations identify irrelevant 
components in the single varying conjunct of two otherwise identical primitives. To 
witness, the minimization is possible of the primitives ABCD and ABCD  if both 
display high S.cons values to the same outcome. The formal reason is that the two 
allow the factorization ABC D D�� � , where D D� �:   by Eq. (7.9). The opera-
tion highlights that the implicant ABC is sufficient to Y regardless of D, which can 
be dismissed as not inus a factor.

The adjudication of the inus nature of single components may change depending 
on how minimizations deal with the logical remainders. The Standard Analysis 
affords three alternative counterfactual assumptions, each leading to “solutions” at 
different degrees of specification, as follows:

•	 Conservative or complex solutions. These are returned under the assumption that 
unrealized logical remainders would have proven ambiguous had they been real-
ized. Hence, minimizations only operate on observed primitives. With high lim-
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ited diversity, the solutions could be as rich as the disjunction of any realized 
primitive.

•	 Parsimonious solutions. A superset—and hence, more general in scope—of the 
conservative solutions, the parsimonious solutions are returned under the 
assumption that any logical remainder could prove sufficient if matching a real-
ized primitive except for one literal.
The surviving factors are the inus components in the hypothesis that are essential 
to account for the difference between the instances of the successful outcome 
and the instance of the failed one.
However, parsimonious minimizations can yield gappy explanations. Like the 
treatment variable in the Potential Outcome Framework (see Chap. 3) or the 
mediators in Path Analysis (see Chap. 6), the solutions from the parsimonious 
minimization may capture a causal channel, but certainly dismiss the informa-
tion about the covariates needed to account for the effect (Damonte, 2021b). The 
reason is that the parsimonious minimizations drop factors regardless of the 
plausibility of the logical remainders that they employ.

•	 Intermediate or plausible solutions. These are returned under the assumption 
that only those logical remainders qualifying as easy counterfactuals would have 
proven sufficient if realized.
To understand the difference between an easy and a hard counterfactual, imagine 
the following. At the outset, we include condition A in the starting hypothesis 
under theoretical and empirical reasons to assume that it is an inus factor. More 
specifically, we assume that the condition makes an unknown causal compound 
Φ sufficient to the outcome Y when given in a state, say A, while in the opposite 
state, say A , it turns Φ into a failure machine. In short, we add A under the direc-
tional expectations that

(i)	 AΦ ⊂ Y; and

(ii)	 A Y� � ,

where ⊂ indicates a subset.

After we build and populate the truth table, we find the primitive ω1 = ABCD is 
observed with an S.cons of 1.00 to Y, while we do not observe (hence we star) the 
primitive �9

* � ABCD.  According to the single difference rule, ω1 and ω9
*  can be 

minimized to BCD. However, the minimization entails that ω9
*  is consistent with Y, 

and hence that AΦ  would yield Y if observed. This goes against our directional 
expectation (ii) and makes a hard or implausible counterfactual of ω9

* .
Now imagine the primitive �13 � ABCD  is realized with an S.cons of 1.00 to Y, 

while the primitive �5
* � ABCD  is a logical remainder. Again, according to the 

single difference rule, ω13 and ω5
*  can be minimized to BCD.  The minimization 

entails that ω5
*  is consistent with Y and that AΦ would yield the outcome if observed. 

This agrees with our directional expectation (i); hence, ω5
*  qualifies as an easy or 

plausible counterfactual.
Intermediate minimizations return solutions from observed primitives and easy 

counterfactuals only. The factors added to the parsimonious solution terms may not 
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be essential to preserve the non-contradictoriness of the compounds. As they 
improve the sufficiency of the implicant, they offer a more complete account of why 
the outcome failed in specific units while succeeding in others (Ragin, 2008; Fiss 
et al., 2013; Duşa, 2019; Oana & Schneider, 2018; Damonte, 2021a; cfr. Baumgartner, 
2015; Baumgartner & Thiem, 2020).

A Note on Ambiguity in Solutions

Regardless of the usage of the logical remainders, it has been emphasized that solu-
tions in Standard QCA may encounter problems of ambiguity as the same primi-
tives to an outcome may yield different prime implicants. To witness, the primitives 
ABC ABC ABC, ,  can legitimately be minimized as AB A CB∪  or AC ABC∪ . 
The information is displayed in a Prime Implicant Chart that shows which prime 
implicant covers which primitive, as displayed in Table 7.2.

Originally, the PI Chart was devised to allow the researchers making a deci-
sion on which implicants could be retained in solutions in light of their theoreti-
cal import. The practice has been deprecated, as cherry-picking implicants may 
build a confirmation bias into solutions (e.g., Baumgartner & Thiem, 2020; 
Baumgartner, 2015), and the current good practices require that alternative 
implicants are reported, too. Besides, the alternative minimizations may contain 
information of interest for discussion. For instance, in the example above, the 
two solutions indicate that A is always required—it can be an enabling condi-
tion—but, in the cases at hand, it obtains in team with B or C—which can play 
as triggering conditions. The richer implicants A C ABB C,  add that the one trig-
ger can compensate for the absence of the other. These two richer implicants are 
currently left implicit by the reporting conventions that reward lean solutions. 
Under these rules, privileged prime implicants are those terms that, together, 
maximize the coverage of primitives—as are AB, AC in Table 7.2. Indeed, the 
conclusion that the union AB ∪ AC obtains the outcome does justice to alterna-
tive minimizations while logically entailing the richer implicants. Still, the 
information in the PI Chart deserves some attention, for it may suggest more 
accurate causal interpretations.

Table 7.2  Example of Prime Implicant Chart

Primitives
Implicants ABC A CB ABC

AB x x
AC x x

ABC
x

A CB
x

7  Testing Joint Sufficiency Twice: Explanatory Qualitative Comparative Analysis



170

Dealing with Trivial Factors

Trivial factors are degenerate necessary conditions, that is, limiting cases of super-
sets. These arise when all or almost all the units in the universe of reference make 
the same state of the condition true—in short, when their distribution is skewed or 
constant.

Trivial factors can be detected by plugging the size of one condition in the place 
of the primitive in the formulas of the N.cons as in (7.18). When all the instances of 
the tested condition display the outcome, the numerator equals the denominator, and 
the parameter takes its highest value of 1.00, supporting the claim that the condition 
is necessary to the outcome. Conditions with a score of N.cons higher than 0.95 can 
be tested for skewness through a further parameter dubbed Relevance of Necessity 
(RoN: Schneider & Wagemann, 2012) and calculated as in (7.19) below:

	

RoN
A

A YA Y� �
�

1

1

–

–
	

(7.19)

The parameter takes its lowest scores when the distribution of the condition by 
the outcome of reference proves trivial—when the size of 1− A  is remarkably 
smaller than the size of 1� �A Y ,  indicating the instances of the negative outcome 
raise independently of the absence of the condition. The standard recommendation 
is to consider dropping the factors with N.cons close to 1.00 and low RoN from the 
hypothesis. Thus, such “analysis of necessity” is a recommended step to be per-
formed ahead of constructing the truth table (Schneider & Wagemann, 2012).

The original expected advantage was of pinpointing those constant conditions 
that double the number of primitives in the truth table while leaving almost half of 
them unobserved and lowering the consistency of every solution. However, the dis-
missal of a quasi-constant may prove unwise if the model requires it to prevent 
contradictory primitives (Rohlfing, 2020). The essentiality of the contribution can 
be easily ascertained by verifying whether a change in the consistencies of the prim-
itives occurs after the seemingly trivial condition is dropped from the hypothesis 
(Damonte, 2021a). Nevertheless, the calculation of the parameters of fit on indi-
vidual conditions remains a crucial source of information, as their values can sup-
port directional expectations or suggest reconsidering them.

7.4 � Soundness

The actual link between sets, predicates, and the real world is decided by how truth 
values are assigned to literals—that is, by gauging.

The standard assumption in representation measurement theory maintains real-
world properties depend on some units’ deep structure that we can know indirectly 
only as meaningful variations in related observable attributes. This theory assumes 
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we can represent these attributes through numerical images and capture their varia-
tion through adequate scales. Scales warrant that for any manifestation pi of the 
property P in the unit ui there is a measure qi of the image Q such that the functional 
relationship between measures preserves some fundamental relationship in the vari-
ation of the attribute.

The seminal work of Stevens (1946) pinpointed four such fundamental relation-
ships: sameness, rank, distance, and proportion, preserved by nominal, ordinal, 
interval, and ratio scales, respectively. Conventional textbooks have long taught that 
a hierarchy of scope exists among measurements with the ratio scale at the top as the 
most “robust” one—i.e., abstracted from actual entities and their contexts. Intended 
as a prudential rule for naive statisticians (e.g., Luce, 1959), the hierarchy has turned 
into a canon and, as such, has been disputed since its introduction. Indeed, any mea-
surement entails a loss function, and the loss is admissible that allows retaining 
crucial information (e.g., Guttman, 1977). Thus, prominent comparatists contend 
that ratio scales prove robust for detecting fine-grained changes, but sacrifice the 
information on “critical points.” The qualitative change that occurs in the state of a 
unit when the measure of a crucial attribute reaches a special value is better con-
veyed by nominal scales (e.g., Sartori, 1984, 1991; Collier & Mahon, 1993; Ragin, 
2000; Goertz, 2020).

In short, scales entail a trade-off between precision and meaning. However, the 
trade-off can weaken when metric variables are remapped as fuzzy sets.

7.4.1 � Gauging for QCA: The Theoretical Side

7.4.1.1 � The Starting Point

Zadeh (1968, 1978) introduced fuzzy sets to widen the scope of algorithmic prob-
lem-solving. He noted how machines could deliver precise solutions, but limited to 
trivial problems, while the human brain tackles complex issues through linguistic 
structures with hazy hedges such as ⌜very⌝, ⌜somewhat⌝, or ⌜almost⌝.

Fuzzy scores translate hedges into weights (μ) ranging from 0.00 to 1.00 to con-
vey the degrees of membership of ui to the set of A instances. They, too, understand 
the membership in a set and its opposite as complements, calculated as in (7.20):

	
� �

i A
i A

�
��

–
–1 00.

	
(7.20)

where ∈ reads ⌜in⌝.
The meaning of the relationship between complements is established by a third 

relevant value, the crossover. Conventionally weighing 0.50, the crossover is the 
point of neutrality and signals a membership neither in the set nor in its complement.

Logically, fuzzy scores capture the possibility that the statement ⌜is A⌝ is true for 
the actual unit ui: 1.00 indicates the statement is certainly true; 0.00 indicates the 
statement is certainly not true; 0.50 indicates that the positioning of ui is highly 
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ambiguous given the observation. Therefore, original fuzzy scores defy a strictly 
bivalent logic. The advantage is that the three points allow alignment of linguistic 
hedges, sets, and metric variables through a triangular, trapezoidal, or bell-shaped 
function. This filter function maps the raw values νA—e.g., age in years—into fuzzy 
scores μA—e.g., membership in the set ‹young›—so that it conveys the certainty 
that a 16-year-old is in the set and a 36-year-old is almost so.

To map meanings onto fuzzy scores, then, the researcher needs to establish

•	 The raw value of the inclusion threshold, α. The threshold truncates any variation 
above α as irrelevant: for any value higher than α, the unit ui does qualify as an 
instance of the set and takes 1.00 as its fuzzy score.

•	 The raw value of the exclusion threshold, β. The threshold truncates any variation 
below β as irrelevant: for any lower values, the unit ui does not qualify as an 
instance of the set and takes the fuzzy score of 0.00.

•	 The raw value of the crossover γ, which makes the classification of ui uncertain 
and corresponds to the fuzzy score of 0.50. In Zadeh’s original system, the raw 
value of the crossover is the arithmetic mean of α and β.

7.4.1.2 � Ragin’s Reinvention

For QCA, Zadeh’s original proposal is affected by a twofold ambiguity. First, lin-
guistic hedges are seldom clearly ordered, and a straightforward correspondence 
with particular fuzzy scores can prove idiosyncratic. Second, triangular, trapezoi-
dal, or bell-shaped relations can make each fuzzy score μA correspond to more than 
one raw scores on νA, which makes it hard to retrieve the raw value from the 
fuzzy score.

Ragin’s fuzzy sets avoid these issues with a gauge that, before rendering natural 
language, includes both pieces of information of interest to comparatists—those of 
“differences in degree,” and of “differences in kind” (Ragin, 2000). His filter func-
tions are monotonic non-decreasing, which re-establishes the isomorphism of raw 
values, fuzzy membership scores, and selected hedges—as in Table 7.3.

The remapping of raw variables into fuzzy scores is especially illuminating of 
Ragin’s rationale of conversion. He portrays it as an operation of calibration—
defined as the fine-tuning of an instrument to improve the validity of its measure-
ments. Although the concept best applies to continuous variables, the calibration 
rationale also informs the transformation of qualitative data into fuzzy scores (e.g., 
De Block & Vis, 2019). Indeed, the instrument to be fine-tuned is the filter function, 
whose shape can be decided using different methods (Ragin, 2000, 2007, 2008:96; 
Duşa, 2019).

The indirect method of calibration assigns the same “qualitative score” from a 
scale such as (c) or (f) in Table 7.3 to groups of cases with similar raw values. Then, 
the cases’ raw scores may or may not be filtered into predicted fuzzy scores through 
the qualitative scores by fractional polynomial regression.
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Table 7.3  Possible positions of ui to A, and corresponding membership values μA

Position
μA

(a) (b) (c) (d) (e) (f)

Fully in 1 1 1 1 1 1
Mostly in

4/5

5/6

More in than out
2/3

3/4 4/6More or less in 3/5

Neither in nor out 1/2
2/4

3/6

More or less out
1/3

2/5 2/6More out than in 1/4 1/5Mostly out 1/6

Fully out 0 0 0 0 0 0

Source: Ragin (2000:156, 2009)

The direct method of calibration, on the other hand, stipulates that the filter func-
tion is a growth curve of odds. The smoothness of the slopes is decided every time 
by suitable raw values for αA, γA, βA. These chosen raw scores are pegged to conven-
tional fuzzy values, fixed at 0.953, 0.500, 0.047, respectively. The log-odds of μα 
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membership of the i-th unit with raw value νi is calculated as in (21) below:
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(7.21)

Ragin’s fuzzy sets can be conceived of as crisp sets weighted by a classification 
error. As such, they convey both qualitative and quantitative information, circum-
venting the trade-off between scales. Indeed, the crisp classification still holds with 
fuzzy scores, following the rule of conversion in (7.22):
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(7.22)

where Ai is the crisp membership of the i-th unit in the set A, while μi ∈ A is the fuzzy 
membership of the same i-th unit in the same set.

The preservation of crisp sets’ qualitative information by QCA’s fuzzy scores is 
further ensured by the convention that the crossover shall not be assigned to any 
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actual unit of analysis—or of dropping the 0.5-instances under the argument that 
they cannot bring helpful information in the analysis (Ragin, 2008; Duşa, 2019).

Furthermore, the basic rules for calculating intersection and union as in (7.6) and 
in (7.10) also apply to fuzzy sets. However, fuzzy scores cannot meet the axiom of 
strong identity (7.1); instead, they follow the more common version (7.23) below, 
meaning that sameness is preserved for units with the same score.

	 A Ai i:= 	 (7.23)

The principles of non-contradiction and excluded middle again hold with fuzzy 
scores in a crisp understanding, as clarified by (7.24) and (7.25):

	
�

i A A� �� � � 0 5.
	

(7.24)

	
�

i A A� �� � � 0 5.
	

(7.25)

It is worth noting that the size of a fuzzy union calculated by (7.6) is usually 
smaller than its crisp versions, while the size of a fuzzy intersection calculated by 
(7.10) is usually larger than its crisp version due to the residuals that fuzzy scores 
leave in the partition.

7.4.1.3 � Fuzzy Sufficiency and Necessity

With fuzzy scores, subset relationships are established as the containment (Ragin, 
2000; cfr. Zadeh, 1978) of membership functions.

Therefore, fuzzy-set sufficiency is captured by Eq. (7.26):

	
� ��i i Y� ��

. 	
(7.26)

Equation (7.26) entails that, if we plot our units on a Cartesian plane defined by 
the membership scores in ω. as the x-axis and the membership scores in Y as the 
y-axis, if ω. is sufficient to Y, it distributes the units above the bisector in an upper-
triangular shape.

Instead, fuzzy-set necessity corresponds to (7.27):

	
� ��i i Y� ��

. 	
(7.27)

Equation (7.27) means that the antecedent ω. that is necessary to Y distributes the 
units below the bisector in a lower-triangular shape.

By extension, the relationship of necessity and sufficiency arises when the units’ 
membership scores in a primitive (or implicant, or condition) equal those in the 
outcome, distributing the units along the bisector in a linear shape.
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The S.cons parameter preserves its meaning with fuzzy scores, although they can 
blur the recognition of violations as the residuals �

i Y Y� �� �  inflate their values. The 

Proportional Reduction of Inconsistency (PRI: Ragin, 2008; Schneider & 
Wagemann, 2012) has been introduced to deflate and complement the information 
from the S.cons calculated with fuzzy scores. The parameter builds on the rationale 
of the proportional reduction of error commonly employed to determine whether 
the information about A improves our prediction of Y (e.g., Menard, 1995). It reads 
as in (7.28):
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where the vertical bars again indicate the size of the fuzzy partition as the sum of 
the units’ fuzzy membership scores in the partition—such that, for 
instance, � � �* :

*
� ��� ii

N
.

1
The set-theoretical task of the PRI is to establish whether the conditional rela-

tionship holds, net of fuzzy residuals. It takes the same value as the S.cons when the 
size of the residuals is null Y Y� � 0 00. .  It degenerates when the units systemati-
cally display higher residuals than membership in the primitive: � � �i Y Y i� �� � ��

*
.  

Last, it takes lower values than the S.cons when the units’ residuals are non-null and 
lower than the membership in the primitive: 0 � �

� �� � �� � �i Y Y i *
.

A PRI value sensibly lower than the corresponding S.cons points to inconsisten-
cies that may justify the exclusion of the primitive from minimizations—or the 
reconsideration of gauges, conditions, or the starting hypothesis.

7.4.2 � Gauging for QCA: The Empirical Side

Whether fine-grained membership scores properly render an inus factor only 
depends on how we construe our gauge—here, on how we set the thresholds. 
Thresholds elicit a solution to the problem of aligning the extension and the inten-
sion of an attribute (Quine, 1982; Sartori, 1984; Goertz, 2020).

A theory-driven approach to the problem clarifies the intension first to prevent 
the risk of stretching attributes beyond their meaning, which would introduce more 
hidden heterogeneity than would be desirable for the analysis (see Chap. 10). At the 
same time, thresholds may spoil the analysis when they enforce some ideal yard-
stick that none of the units can meet. In short, theoretical thresholds can become 
useless when decisions are not fine-tuned to actual diversity.

QCA scholars have developed several recommendations to balance these oppo-
site risks. The recommendations assist the researcher in tackling three intertwined 
problems—namely, unit selection, the operationalization of causal properties, and 

7  Testing Joint Sufficiency Twice: Explanatory Qualitative Comparative Analysis



176

the identification of thresholds that align meanings and empirics. In actual research, 
the point of attack may change; however, the resulting membership scores provide 
a single solution to all three issues—likely, after some iteration.

7.4.2.1 � Establishing the Universe of Reference

As in any technique, units of observation provide as solid an empirical ground to the 
analysis as the criteria for their selection. Such criteria should prevent or minimize 
the later rise of threats to credible results (e.g., Geddes, 1990; Goertz, 2020).

In explanatory QCA, case selection has to ensure enough diversity to capture the 
causal facts of interest. Thus, the criterion cannot exclusively focus on the depen-
dent or the independent. Units selected on the outcome of interest would artificially 
prevent inconsistencies—thus making the validity of results undecidable. On the 
other hand, units selected on the factor of interest would turn it into a constant back-
ground feature and make its causal contribution undecidable. Hence, the first crite-
rion that unit selection shall meet is the variability in realized states and combinations 
of factors.

The broadest variability follows from open universes, but open universes may 
endanger the preservation of meaning (i.e., Ragin, 2008). Geographical, historical, 
and cultural boundaries provide the closure of the units’ heterogeneity required for 
making interpretable decisions about thresholds. Indeed, different α, β, γ may be 
needed to establish whether a country qualifies as <RICH>, <DEMOCRATIC>, or 
<EQUAL> in different world regions and time frames. Therefore, the second and 
related criterion for unit selection consists of finding the meaningful scope condi-
tion that encloses the universe of reference and ensures interpretable membership 
scores. In short, the correspondence of meaning and numbers comes at the cost of a 
restriction in the scope of the analysis—and in the generalizability of results (e.g., 
Goertz, 2017; Walker & Cohen, 1985; Verweij & Vis, 2021; Findley et al., 2021). 
The limitation, however, might not apply to the starting explanatory hypothesis, 
which may travel farther than its operational specifications.

7.4.2.2 � Operationalizing Intension

The operation of connecting gauges and attributes meaningfully is seldom straight-
forward. Again, it opens to two opposite risks of providing too a specific or generic 
definition of an attribute (e.g., Sartori, 1984; Ragin, 2008).

Hyper-Specificity

The fallacy of composition occurs when we recognize each “token” empirical mani-
festation as a different property and build a plethora of conditions with too narrow 
an extension (e.g., Menzies, 2004; Craver & Kaplan, 2020; cfr. Chap. 10). The 
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problem can be solved by recognizing functional equivalences, climbing the ladder 
of abstraction, and gathering functionally equivalent manifestations under a sin-
gle label.

Verba (1967) elaborates on the point by discussing how case-based evidence can 
be turned into a causal factor. From the historical report on how the eruption of 
Mount Vesuvius had a significant impact on the stability of the Pompeiian political 
system, we may identify either ‹eruption› or ‹calamity› as a relevant inus factor; 
however, the latter includes the former and accommodates a broader number of 
functionally alternative sources of disruptions, thus widening the scope of 
comparisons.

According to Verba, an even better operationalization shifts the attention from 
contextual conditions to the properties of the unit of analysis. Instead of gauging the 
sources of disruption, the operationalization can narrow on those resources and 
arrangements that make the system respond to disruption effectively. From this 
viewpoint, ‹resilient› better contributes to an explanatory theory of political sys-
tems’ stability than ‹calamity›. The system attribute can apply to the Pompeiian 
case, but travel farther across contexts.

Hyper-Generality

The second and opposite problem arises when the properties are encompassing to 
the point of losing their analytic capacity.

The problem often arises when the available measure of a concept is a composite 
of predictors, enabling factors, proxies, outputs, and outcomes. Such assorted con-
tent can make these composites apply “everywhere, as any universal should” but 
also “to everything.” As a result, we incur “theoretically, a ‘nullification of the prob-
lem’ and, empirically, what may be called ‘empirical vaporization’” (Sartori, 1991; 
Chap. 9; cfr. Collier & Mahon, 1993).

QCA detects these composites as trivial conditions  and suggests they can be 
dismissed. However, composites may contain relevant explanatory information. The 
inus standing of selected components can be decided by their consistency to the 
outcome and by minimizations. In addition or as an alternative, suitable rules of 
composition by disjunction and conjunction may be devised to compress sub-prop-
erties into “superconditions” (Elman, 2005; Berg Schlosser & De Meur, 2009; 
Goertz, 2017; Damonte & Negri, 2019).

The Problem of Missing Values

Often, available raw measures are plagued with missing values. QCA’s algorithm 
technique cannot handle them clearly, as the units for which the value is missing 
would belong to two primitives. This ambiguity can be tackled by running parallel 
analyses to verify whether the different classifications result in different solutions. 
If not, the unit and its partial information would prove irrelevant. When different 
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classifications affect solutions—for instance, because they decide whether a primi-
tive is realized or not—the information proves relevant, but the problem arises of 
how to decide between the two solutions.

Missing raw values require some credible criterion of adjudication. Alternatively, 
the measure can be substituted with a complete gauge of the same intension, if any. 
Last, the unit can be dropped from the analysis (Ragin, 2008; Basurto & Speer, 
2012; Duşa, 2019). The move may increase the number of logical remainders, but 
remainders can be more adequately addressed with counterfactual rules in 
minimization.

7.4.2.3 � Identifying Membership Thresholds

Thresholds explicate the rule that establishes a unit to be an instance of the set given 
its raw value. The default recommendation is to anchor these decisions on external 
theories and conventions (Ragin, 2000, 2007, 2008).

Special values of national and international policy indicators—for instance, 
household income to establish the risk of poverty; the share of people in an age 
cohort in education or training to expect a certain quality of society; the share of 
debt to revenue to establish the credibility of a borrower—may offer accepted 
anchorages to calibration decisions. However, conventional knowledge may evolve 
at a slower pace than actual phenomena. Under particular contingencies or within 
special areas, its usage for calibration may return skewed membership scores that 
would not survive the RoN test. Besides, a conventional tipping point may coincide 
with some units in the population, making them uninformative.

To avoid these issues, conventional knowledge can be adjusted in light of distri-
butional considerations (Ragin, 2008). Although descriptive statistics lack qualita-
tive meaning, considerations about quintiles seem unavoidable in large-N studies or 
whenever previous knowledge is wanting (e.g., Ragin & Fiss, 2017). A supplemen-
tary strategy—and consistent with the concern for non-contradictory partitions—
prescribes cluster analysis to identify the raw values to be used as thresholds. The 
underlying rationale maintains that units close to each other belong to the same 
partition—and hence, that thresholds lie in the “natural gaps” between clusters.

Although long offered as a standard function for threshold setting by many soft-
ware packages (e.g., Duşa, 2019), cluster analysis has driven concerns that its appli-
cation might convey a deceiving sense of certitude about calibration and solutions. 
The risk of overconfidence can also increase when the membership scores are 
assigned directly following one of the scales in Table 7.3. Indeed, the researcher’s 
classification error can always affect scoring operations in unknown directions.

To keep the risk at bay, zooming into the units around a threshold can help to 
support decisions with empirical knowledge when the number of cases allows it 
(Ragin, 2000; De Block & Vis, 2019). Frontier literature has also developed on false 
negatives and false positives in solutions (Braumoeller, 2015; Rohlfing, 2018) and 
on alternative filtering functions (Thiem, 2010). A further strategy suggests ascer-
taining the “robustness” of the solutions by running parallel analyses under different 
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perturbations of units and thresholds (Marx & Duşa, 2011; Maggetti & Levi-Faur, 
2013; Duşa, 2019; Oana & Schneider, 2018).

Many of these considerations are more justified in exploratory than in explana-
tory applications of QCA. When the driving concern is the preservation of particular 
meanings, seldom different gauges can render it equally well. To witness, Ostrom’s 
theory of corruption maintains that people’s perception of ineffective monitors and 
sanctions drives the belief of diffused wrongdoing that invites resorting to corrup-
tion along the lines of a self-fulfilling prophecy. In testing the tenability of this 
theory, the indexes of inefficiency in administration often used as a proxy of corrup-
tion are less suitable gauges of the phenomenon to be explained than the measures 
of perceived corruption.

In explanatory usages, however, coder’s biases are possible, and this possibility 
can be explored by simulating some systematic tendencies toward strictness, gener-
osity, confidence, or coyness in assigning membership scores. These tendencies can 
be rendered by calculating the concentration (7.29), dilation (7.30), intensification 
(7.31), or moderation (7.32) of the original fuzzy scores (Smithson & 
Verkuilen, 2006):
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These transformations expose the worsening or the improvement that coders’ 
biases can impart to solutions. They prove that truth tables and solutions inevitably 
change with scoring strategies—and the intensification, by bringing the fuzzy truth 
table closer to its crisp version, inevitably enhances the consistency and symmetry 
of observed primitives. In the end, the relative fragility of findings mirrors the speci-
ficity of our operationalization —but also its local value. It counts less as a problem 
of the technique or the algorithm than an issue in our knowledge, models, and gaug-
ing strategies.

7.5 � Summing Up

To run a credible explanatory QCA, a researcher may want to
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	1.	 Define the outcome of interest, the causal stories about its generative process, 
and the conditions that make it “certain.” This step implies reviewing the theo-
retical and empirical literature to find testable definitions of the outcome, and 
identifying a convincing (type of) data-generation mechanism beneath it. Based 
on the mechanism, triggering, enabling, and shielding inus conditions can be 
hypothesized that, jointly given in an ideal unit, would compel the generation 
process and ensure it unfolds unimpeded. This bundle provides the starting inus 
hypothesis.

	2.	 Identify the universe of reference and the raw variables that render the hypoth-
esis, then declare the directional expectations about each factor. Define a scope 
condition for a population ensuring meaningful units’ diversity. Choose the raw 
measures at the proper level of abstraction to render each factor as faithfully as 
possible. Estimate the missing values, or discard the corresponding unit. Then, 
declare the directional expectations about the contribution of each factor to the 
occurrence and failure of the outcome.

	3.	 Turn raw data into membership scores. Explore the variation in the raw mea-
sures; identify thresholds; assign membership scores to instances with proper 
operations. Different scaling may affect the assessment of set-relationships; con-
sider applying the same scaling. Consider whether the specification of the 
hypothesis may benefit from the compression of some factors; in that case, add 
the new superconditions to the dataset. Calculate different datasets with diluted, 
concentrated, moderated, and intensified scores to run parallel analyses for 
robustness.

	4.	 Assess the claim of individual consistency. Calculate the necessity parameters 
for single conditions against the outcome and its negation. Identify those condi-
tions from the starting hypothesis with N.cons above 0.95 and low RoN, and fork 
the analysis by running the next steps with and without them. If compressed 
conditions obtain better N.cons and N.cov values than the original ones, consider 
dropping the latter. N.cons and N.cov values can also be used to establish whether 
the directional expectations stand in the population.

	5.	 Assess the claims of sufficiency. Build the truth tables of the positive and negative 
outcome, assign instances to primitives, and calculate the S.cons and the PRI of 
the realized primitives. Check for inconsistent instances in configurations; if 
found, re-run the calibration. Be it of no help, add a further condition in line with 
the starting hypothesis to improve the consistency of each primitive to one 
outcome.

	6.	 Minimize. Establish the cut-off in the values of S.cons below which the observed 
primitives will not be deemed consistent with the claim of sufficiency—in case, 
with the help of PRI values—to both the positive and the negative outcome. Find 
the conservative, parsimonious, and plausible solutions. Consider the difference 
in the composition of each prime implicant from the parsimonious and the plau-
sible solution. If new conditions appear in the latter, check whether the S.cons 
values of the plausible solution are higher than the parsimonious. Higher consis-
tency values indicate the addition is detectably meaningful, and the plausible 
solution is more credible than the parsimonious. If the additional conditions in 
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the plausible solution do not improve the S.cons values on the parsimonious, 
consider re-running the analysis from step 5 without these additional conditions 
to verify the robustness of minimizations.

	7.	 Plot the solutions to the outcome and its negation. Check the fitting of the 
instances to the upper triangular shape, assuming the shape is met when instances 
fall above the y = x + 0.1 line (Ragin, 2000). Discuss which implicants explain 
which instances of the outcome. Consider the unexplained instances.

	8.	 Return to theory. Consider the logical relationship between the solutions to the 
outcome and its negation. Identify the strategies that a negative instance can 
adopt to reach the closer positive group.

	9.	 Run re-analyses and extensions for robustness. Run the analysis with different 
calibrations and scope conditions, and compare the raising of contradictory con-
figurations, the change in necessity, the differences in solutions.

You can find the example here https://doi.org/10.5281/zenodo.7117973.
Enjoy your explanatory QCA!

Suggested Readings

The full-fledged version of the original proposal remains Charles C. Ragin, 2008. Redesigning 
social inquiry: Fuzzy sets and beyond. University of Chicago Press. An updated version and 
close to the original proposal is Patrick A.  Mello’s Qualitative Comparative Analysis: An 
Introduction to Research Design and Application (Georgetown University Press, 2021). A 
more case-oriented version is Ioana-Elena Oana, Carsten Q. Schneider, and Eva Thomann’s 
Qualitative Comparative Analysis Using R: A Beginner’s Guide (Cambridge University 
Press, 2021).

The detailed documentation of the R functions for QCA is in Adrian Duşa’s QCA with R: A 
comprehensive resource (Springer, 2019). Additional functions are in Ioana-Elena Oana and 
Carsten Q. Schneider’s SetMethods: an Add-on R Package for Advanced QCA (The R Journal 
https://doi.org/10.32614/RJ-2018-031).

The standards of transparency in reporting QCA are detailed in Schneider, Carsten Q., Vis, Barbara 
and Koivu, Kendra, 2019. Set-Analytic Approaches, Especially Qualitative Comparative 
Analysis (QCA), https://doi.org/10.2139/ssrn.3333474

Review Questions
Section 7.2

	(a)	 What is inus causation?
	(b)	 What is an inus machine?
	(c)	 How are the two concepts related to directional expectations?

Section 7.3

	(a)	 What is a literal?
	(b)	 What is a set?
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	(c)	 What is the relationship between the membership in a set and the truth value of 
a proposition?

	(d)	 What is a truth table?
	(e)	 How many primitives has a truth table of seven literals?
	 (f)	 Construe the truth table of literal A and the ⌜not⌝ connective.
	(g)	 What does the principle of non-contradiction say?
	(h)	 What does the weakest link rule say?
	 (i)	 How do you calculate the membership of a unit in an intersection?
	 (j)	 Construe the truth table of literals A, B, C, D and compute the truth function of 

the ⌜and⌝ connective.
	(k)	 What does the principle of the excluded middle say?
	 (l)	 What does the strongest link rule say?
	(m)	 Construe the truth table of literals A, B, C, D and compute the truth function of 

the ⌜or⌝ operator.
	(n)	 What is the consistency of sufficiency?
	(o)	 How can the consistency of sufficiency support the assessment of 

underspecification?
	(p)	 What is the consistency of necessity?
	(q)	 How can the consistency of necessity support the assessment of 

overspecification?
	 (r)	 What is in a parsimonious solution?
	(s)	 What is a hard counterfactual, and what is an easy one? In which round of 

minimizations are they employed?

Section 7.4

	(a)	 How do fuzzy scores accommodate qualitative and quantitative information?
	(b)	 What are the shapes of the filter function in Zadeh’s fuzzy sets, and how do they 

differ from Ragin’s?
	(c)	 What is the meaning of the inclusion and exclusion points in terms of relevant 

and irrelevant variation?
	(d)	 What is the rule for turning fuzzy into crisp scores? Can we reverse the 

transformation?
	(e)	 The membership score of u1 in set A is 0.3. Calculate the value of its member-

ship in the intersection A A∩ .
	(f)	 Do fuzzy scores violate the principle of non-contradiction?
	(g)	 The membership score of u1 in set A is 0.3. Calculate the value of its member-

ship in the union A A∪ .
	(h)	 Do fuzzy scores stretch the principle of the excluded middle?
	(i)	 What is the PRI for?
	(j)	 How can you ascertain the robustness of configurational solutions?
	(k)	 Calculate the concentrated, dilated, intensified, and moderated scores of unit ui 

with original membership in Y of 0.9 and in A of 0.8.
	(l)	 Calculate the S.cons of each transformation from exercise 11, and order them 

from the strongest to the weaker. Which fares better, and which worse?
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Chapter 8
Causal Inference and Policy Evaluation 
from Case Studies Using Bayesian Process 
Tracing

Andrew Bennett

Abstract  Case studies enable policy-relevant causal inferences when experimental 
and quasi-experimental methods are not possible. Even when other methods are 
possible, case studies can strengthen inferences either as a standalone method or as 
part of a multimethod research design. The chapter outlines the case study method 
of process tracing (PT), which is a within-case mode of analysis that builds upon 
Bayesian logic to make inferences to the best explanation of the outcomes of single 
cases. The chapter locates the epistemological basis of PT in the development and 
testing of theories about the ways in which causal mechanisms operate to generate 
outcomes. It then defines PT and outlines best practices on how to do it, illustrating 
these with examples of case study research on the COVID pandemic. The chapter 
then outlines the comparative advantages of PT vis-à-vis other methods, and identi-
fies the kinds of research questions and research contexts for which PT is most use-
ful. This leads to a brief discussion of two methodological innovations: formal 
Bayesian PT and the use of causal models in the form of Directed Acyclic Graphs 
to assist PT and integrate qualitative and quantitative evidence. The chapter con-
cludes with the strengths and limits of PT.

Learning Objectives
After reading this chapter, you should be able to:

•	 Explain the epistemological basis of PT and its focus on theories about causal 
mechanisms.

•	 Carry out PT on a case study and use evidence from that case study to update 
your initial estimates of the likelihoods that alternative explanations of the out-
comes of the case are true.

•	 Follow best practices of PT.
•	 Identify the kinds of research questions and contexts in which PT is most useful.
•	 Understand the Bayesian logic that underlies PT inferences.
•	 Understand the strengths and limits of PT as a method of causal inference.
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8.1 � Introduction

Policymakers often need to assess the likely outcomes of alternative policies. To do 
so, they frequently need to develop causal understandings of past outcomes in situ-
ations where few cases exist and experiments are not possible for ethical or financial 
reasons. Process tracing (PT), a technique of within-case analysis analogous to 
detective work or medical diagnosis, is a key method of causal inference in indi-
vidual cases. The goal is to explain the outcome of a single case, and as in detective 
work, the researcher can build upon both “suspects” (theories that provide potential 
alternative explanations for the outcome of a case) and “clues” (evidence or diag-
nostic tests).

Case studies have a long history—implicitly, they have been the primary method 
for historians and political observers since the Greek historian Thucydides wrote his 
chronicles in the fifth century BC. Many case studies have been done without much 
methodological rigor, however, which has given case study methods a bad reputa-
tion in some fields of research. In the past two decades, methodologists in political 
science and sociology have greatly improved and systematized case study methods, 
particularly the method of PT. This includes efforts to both refine case study meth-
ods and disseminate them to researchers through organizations, such as the American 
Political Science Association’s section on Qualitative and Multimethod work, and 
training programs, including those sponsored by the Institute for Qualitative and 
Multimethod Research (IQMR) at Syracuse University, the European Consortium 
for Political Research (ECPR), the Global School on Empirical Research Methods 
(GSERM) at the University of St. Gallen, summer schools at the University of Oslo 
and the University of Essex, and MethodsNet.

The present chapter gives an overview of PT and recent innovations in this 
method. It begins with a discussion of the epistemic assumptions of PT, building on 
Daniel Little’s Chap. 2 in this volume. It then defines PT and outlines best practices 
on how to do it, illustrating these with examples of case study research on the 
COVID pandemic. Next, the chapter assesses the comparative advantages of PT 
vis-à-vis other methods, including some of those addressed in the other chapters in 
this volume. This section also identifies the kinds of research questions and research 
contexts for which PT is most useful. The chapter then outlines two new develop-
ments in PT methods: formal Bayesian PT, and the use of causal models in the form 
of Directed Acyclic Graphs to assist in PT and to integrate qualitative and quantita-
tive evidence. The chapter concludes with the strengths and limits of the method.

8.2 � The Epistemic Foundations of Process Tracing

For policy purposes as well as academic theoretical progress, we need causal knowl-
edge: what will be the outcome if we try policy X or if X happens in the world? Yet 
all research methods confront what has been called the “fundamental problem of 
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causal inference”: we cannot rerun history after trying policy X, or after X happens 
in the world, and observe the outcome in the absence of X, while holding all other 
variables and historical developments constant.

Although no method can fully surmount this problem, scholars have outlined 
four general approaches to causation and associated methodological approaches to 
causal inference: regularity, counterfactual analysis, manipulation/experiments, and 
the causal mechanism account (Brady, 2008; see Chap. 2). The regularity approach, 
which Henry Brady calls “neo-Humean” after the philosopher David Hume, focuses 
on what Hume called “constant conjunction,” or what we now call correlation as the 
key to scientific explanation (Brady, 2008). The well-known limitation of this 
approach is that correlation does not equal causation. Even when observational data 
is plentiful, and robust correlations convince us that some causal relationship prob-
ably exists, the nature of the process that generates the correlations may be unknown, 
and the direction of causation—does A cause B, or does B or the expectation of B 
cause A—is not always certain. Statistical analyses also face the “ecological infer-
ence problem”: even if a correlation is causal, it does not necessarily explain any 
individual case in the population under study. A medicine could be helpful on aver-
age, for example, and at the same time be lethal to those who have an allergy to that 
medicine.

The counterfactual approach, and associated “potential outcomes” methods, 
posit that something is a cause if it satisfies the following: “if A then B, if not A then 
not B” (or, if not A then B does not happen in the same way, at the same time, or 
with the same magnitude). This definition of causation is intuitively appealing as a 
kind of common-sense understanding of causation, but it is more a thought experi-
ment than a method of inference because we cannot observe counterfactual out-
comes. In addition, while counterfactuals offer an intuitively appealing account of 
causation, they are also intuitively unsatisfying, and a weaker guide to policy 
choices in other cases, if they lack some account of the process through which the 
observed outcome arose (and that through which the unobserved counterfactual 
could have arisen).

The manipulation or experimental approach works to get as close as possible to 
observing the counterfactual outcome. It does so by selecting a “control” case or 
unit (or many randomly selected control cases or units) on which no manipulation 
is performed, and comparing the outcome to that of a case or unit to the outcome of 
a case that is as similar as possible to the control unit except that it has been subject 
to some treatment (or if there are many randomly selected cases, a comparison is 
made to a randomly selected treatment group).

This gets around some of the limitations of observational statistical analyses, but 
experiments have many demanding requirements or assumptions that must be met 
to be internally and externally valid. By one account, 26 requirements must be met 
for an experiment to allow a valid causal inference, including that random assign-
ment has been properly done, that the proper statistical test is applied, that the sam-
ple size is sufficiently large, that there is no “compensatory rivalry” (which can 
happen if experimental subjects find out which group they have been assigned to 
and try harder to achieve a favorable outcome), and that there are no treatments that 
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occur apart from the specific one under study (Cook, 2018). Even when these 
assumptions are met, an experiment may or may not get us much closer to under-
standing the processes that generate the observed outcome(s), which limits our abil-
ity to anticipate the scope conditions under which the causal relationship holds. In 
addition, for many important policy challenges, experiments are impractical, a point 
elaborated below. Even when field experiments are possible or historical processes 
provide “natural” experiments with nearly random assignment of individuals to 
some “treatment,” experiments outside of a controlled laboratory setting introduce 
many potential confounding variables that make it difficult to satisfy the assump-
tions necessary for causal inference.

The fourth approach, focusing on causal mechanisms and their capacities, pro-
vides the epistemological basis for PT (see Chap. 2, herein). In one much-cited defi-
nition, causal mechanisms can be thought of as “entities and activities, organized 
such that they are productive of regular changes” (Machamer et al., 2000). Causal 
mechanisms are the ontological entities in the world that generate the outcomes we 
observe, and we attempt to model these mechanisms with theories. This approach is 
consistent with and, in some sense, more fundamental than the others outlined 
above, as it includes a focus on the activities or processes that create correlations, 
that make experiments work, and that explain both actual and, if we could observe 
them, counterfactual outcomes. It is the regularity of causal mechanisms, or what 
some have called “invariance,” that gives them explanatory power.1 Put another way, 
causal mechanisms cannot be “turned off” when the conditions that enable their 
operation exist.

Unlike some approaches to explanation, the causal mechanisms view rejects “as 
if” theoretical assumptions, or assertions that theories need not be consistent with 
more micro-level processes as long as these theories are predictively accurate “as if” 
their stated or implicit micro-mechanisms were true. In a causal mechanisms 
approach to explanation, theories must be consistent with the evidence at lower 
levels of analysis or smaller slices of space and time. We may, for pragmatic rea-
sons, consider a simplified theory adequate for some policy purposes even if it does 
not give details on micro-level processes, but we do so knowing that a theory that is 
more consistent with the details at the next level down has greater accuracy and 
might lead to more nuanced policy prescriptions. The 1960s theory that “smoking 
can cause cancer,” for example, was sufficient for the public health policy advice 
“don’t smoke,” even though the detailed processes relating smoking to cancer were 
unknown at the time. We now have a more detailed theory about smoking and can-
cer that allows more precise policy prescriptions, such as “people with a mutation at 
a specific region on chromosome 15 are at a particularly high risk of cancer if they 
smoke.” Theories on macro-level social processes and outcomes can be useful, and 
for some purposes, it may be more efficient to do PT at the macro level, but if 
macro-level theories work through lower levels of analysis like individuals’ choices, 

1 “Invariance,” as used here, does not exclude probabilistic causal relations; it can include probabi-
listic relations that are in some way bounded (Waldner 2012, 2016).
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they must still be consistent with the processes through which those choices are 
made to be considered as accurate as possible.

PT exploits this aspect of mechanistic explanations by generating and assessing 
evidence, sometimes in detailed slices of space and time, on the explicit or implicit 
processes hypothesized by alternative explanations for the outcomes of individual 
cases. It thus takes advantage of two sources of evidence and inference that Hume 
did not include as core features of his constant conjunction account: contiguity and-
sequencing. Contiguity gets at entities in spatial proximity, bumping into each other 
or exchanging information—in social phenomena, who said or did what to whom. 
Sequencing uses the order in which things happened to help make inferences to the 
best explanation of the outcomes of cases—although it can be empirically hard to 
tell which of two parties escalated a confrontation, for example, the order in which 
it happened matters in explaining the outcome.

The focus on evidence on hypothesized processes raises three challenges for PT: 
how far down must we go into the details of processes? when should we stop gather-
ing evidence? and how far back in time should we go to provide adequate explana-
tions? Unfortunately, while Bayesian logic, outlined below, provides answers to 
these questions, they are rather general: we stop pushing into more detailed observa-
tions, gathering additional evidence, or probing earlier points in time when we think 
it is unlikely that doing so will change our confidence in the likelihood of alternative 
explanations sufficiently to be worth the effort it would entail. Put another way, 
process tracers balance two risks:

	1.	 Of stopping the collection and analysis of evidence too soon, when just a little 
more effort would have provided evidence that would convince us of a different 
explanation, and

	2.	 Of stopping too late, expending effort that does not change our confidence in 
alternative explanations of the outcome.

On a more pragmatic level, at some point, social scientists leave the study of 
more detailed social and psychological processes to other fields of study that have 
the skills and equipment to gather and assess evidence on these processes: cognitive 
psychology, neuroscience, microbiology, and so on. But we should—and do—pay 
at least some attention to the research at these lower levels of analysis because find-
ings inconsistent with our theories indicate that we need to modify those theories. 
In the fields of economics and political science, for example, numerous theories 
build on research2 that demonstrates how human decision-making often involves 
cognitive biases that depart from the assumptions of earlier rational choice models.

2 Studies of the biological basis of emotions, and the effect of emotions on decision-making, are at 
an earlier stage of development, but are starting to gain notice in the social sciences as well.
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8.3 � Process Tracing Best Practices and Examples 
from COVID Research

8.3.1 � Definition of Process Tracing

PT is the gathering and “analysis of evidence on processes, sequences, and conjunc-
tures of events within a case for the purposes of either developing or testing hypoth-
eses about causal mechanisms that might causally explain the case” (Bennett & 
Checkel, 2015:7).

Bayesian logic is the underlying foundation of PT.  Bayesianism in PT treats 
probabilities as degrees of belief in alternative explanations.3 In this approach, we 
use our existing background knowledge to form initial degrees of belief in alterna-
tive explanations of the outcome of a case (called the “priors”), and then analyze 
evidence to form updated degrees of belief, now conditioned on the evidence (called 
the “posteriors”). The relative probability of evidence under the explanations is 
called the “likelihood” (or, when comparing two explanations, the “likelihood 
ratio”). Bayesianism uses the laws of probability to convert the likelihood of the 
evidence conditioned on the explanations to the posteriors, or the likelihood of the 
explanations conditioned on the evidence.

In mathematical symbols, Bayes Theorem outlining this process of updating can 
be expressed as in Eq. (8.1):

	 Pr P k
Pr P k P

Pr P Pr k P Pr P Pr k P
|

( ) |

( ) | |
� � �

� �
� � � � � � �
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� �
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where

–– Pr(P| k) is the posterior or updated probability of proposition P given (or condi-
tional on) evidence k.

–– Pr(P) is the prior probability that proposition P is true.
–– Pr(k| P) is the likelihood of evidence k if P is true (or conditional on P).
–– Pr(~P) is the prior probability that proposition P is false.
–– Pr(k| ~P) is the likelihood of evidence k if proposition P is false (or condi-

tional on ~P).

A mathematically equivalent equation, known as the “odds,” form Bayes 
Theorem, which in some ways in easier to work with, is as follows:

	 PosteriorOdds Ratio Likelihood Ratio PriorOdds Ratio� � 	

3 In frequentist statistics, by contrast, probability represents the limit of an event’s relative fre-
quency in many trials.
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where the Likelihood Ratio is the probability of finding evidence k conditional on P 
being true divided by the likelihood of k conditional on P being false. In the notation 
of probability, the equivalent equation reads as in (8.2):
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An intuitive way to understand Bayesian logic is to think of the strength of evi-
dence, or the relative likelihood of finding a particular piece of evidence under alter-
native explanations. Evidence that is much more likely under one explanation than 
under another has high probative value. We already have a colloquial language for 
the strength of evidence (Van Evera, 1997: 31–32): evidence can constitute “smok-
ing gun” tests, “hoop” tests, “doubly decisive” tests, or “straw in the wind” tests.

•	 A smoking gun piece of evidence is information that strongly affirms an explana-
tion if the evidence proves to exist, but only weakly undermines that explanation 
if the evidence is not found. The metaphor here is that if a smoking gun is found 
in the hand of a murder suspect immediately after a shot is heard and the victim’s 
body falls, then that suspect is very likely to be the murderer. The failure to find 
a smoking gun in the hand of a suspect, however, does not exonerate that suspect.

•	 Hoop tests involve strong evidence that is asymmetric in the other direction. 
Passing a hoop test means an explanation is still a viable candidate, but it only 
slightly increases the probability that the explanation is true. Failing a hoop test, 
on the other hand, greatly undermines our confidence in an explanation. If a 
murder suspect was in a different city from the victim at the time of the murder, 
for example, the suspect is exonerated, as the “guilty” hypothesis has failed a 
hoop test. But finding that the suspect was in the same city as the victim does not 
greatly incriminate the suspect, as many people were in the city at the time.

•	 Doubly decisive tests are symmetrical: they are strong at both affirming one 
explanation and casting doubt on others. An example here is a bank video camera 
that catches the face of a robber, incriminating them and exonerating others at the 
same time.

•	 Straw in the wind tests are symmetrical but weak—in court cases, we refer to 
them as “circumstantial evidence.” The labels and descriptions of these four 
kinds of evidence are useful for teaching and understanding Bayesian logic, but 
it is also important to note that they are points on a continuum: the relative prob-
ability of evidence under alternative explanations can range from zero to one, 
and evidence can have different degrees of (a)symmetry.
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8.3.2 � How to Do Process Tracing

A brief outline of how to do PT is as follows:

•	 First, identify the dependent variable or outcome to be explained and develop 
some candidate theories that might explain the outcome of interest, together with 
their associated independent variables.

•	 Second, after gaining at least preliminary knowledge of the values of the inde-
pendent and dependent variables of cases in the population of interest, select the 
case or cases on which to do PT.4 There are many rationales for different types of 
case selection in small-n research, depending on the research objective. While a 
full discussion of case selection is beyond the scope of the present chapter (see 
Gerring & Seawright, 2008), as one example, if the goal is to try to identify pro-
cesses or variables omitted from extant theories or models, it can be useful to 
study an outlier or deviant case that does not fit existing theories or statisti-
cal models.

•	 Third, after selecting the case or cases for PT, revisit the initial candidate theories 
and develop a more precise set of mutually exclusive and exhaustive potential 
explanations of the outcomes of the particular cases to be studied. This might 
include some potentially causal features of the individual cases that were not 
initially considered among the general candidate theories.

•	 Fourth, make a preliminary estimate of the likelihood that each explanation is 
true (the “prior” in the Bayesian logic that underlies PT).

•	 Fifth, derive the observable implications of each alternative theory for each case, 
asking: “what specific and concrete processes must have operated, in what 
sequence, if this theory explains the case, and what kind of potentially accessible 
evidence would those processes leave behind? What evidence would be true if 
each theory is not a valid explanation of the outcome of the case?”

•	 Sixth, gather the evidence and weigh its likelihood under the alternative explana-
tions. When evidence is more likely to be true under one explanation than under 
the others, it increases our confidence that the first explanation is true. The most 
powerful kind of evidence is that which is far more likely under one theory or 
explanation than the others. Such evidence allows the researcher to strongly 

4 In contrast to statistical methods, random selection of cases is inadvisable in small-n research, and 
it is best to select cases for study with at least preliminary knowledge of the values of their inde-
pendent and dependent variables. Cases that are positive on an independent variable of interest and 
positive on the outcome of interest (positive-positive cases) present potential opportunities to 
examine whether and how/through what processes or mechanisms the independent variable gener-
ates the outcome. Positive-negative cases are cases in which a hypothesized variable does not lead 
to a positive outcome can clarify the scope conditions of that variable. Negative-positive cases 
show paths to the outcome that do not involve the independent variable whose value is negative. 
Negative-negative cases provide less useful information. One should not study nuclear weapons 
proliferation, for example, by looking at countries that have neither a nuclear power program nor 
a close ally that might share nuclear technology and that (unsurprisingly) do not have nuclear 
weapons.
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update their degrees of confidence in alternative possible explanations for the 
outcome.

•	 Finally, weigh the totality of the evidence, including both strong and weak evi-
dence, and update the prior estimate of each explanation’s likelihood of being 
true to produce a new posterior estimate.

Thus far, this account outlines the deductive side of PT. In addition, PT has an 
inductive side. Any unanticipated evidence that appears to perhaps play a causal 
role but does not fit any of the candidate explanations might provide the basis for a 
new explanation of the case. When a researcher adds a new alternative explanation, 
it is necessary to re-estimate the priors of the revised set of explanations, re-estimate 
the likelihood of evidence under each explanation relative to the others, and re-
weigh the totality of the evidence to update the likelihood that each of the alternative 
explanations is true.

Bayesian logic in PT helps dispel a common misconception about the validity of 
different kinds of iterations between theories and evidence. Methodologists often 
argue that a researcher cannot develop a theory from a case and then test it against 
that same case. There is a good rationale for this injunction in frequentist statistical 
methods, as a theory derived from correlations found in a population sample cannot 
legitimately be tested against that same population sample, as the probability of 
disproving the new theory is zero. Using Bayesian logic in PT, however, makes it 
possible to derive a theory from a piece of evidence and then test that theory in the 
same case (Fairfield & Charman, 2018). There are two reasons for this, one incon-
trovertible and one more contestable. The incontrovertible reason is that it is often 
possible to develop a theory from a case and then to test it against different, inde-
pendent, and heretofore unexamined evidence from the case that could still prove 
the new theory to be wrong. Detectives and doctors do this all the time—a doctor 
might find one piece of diagnostic evidence that suggests a patient might be afflicted 
by a disease the doctor had not previously considered, and this insight can lead to 
additional diagnostic tests on the same patient. If the new tests are based on biologi-
cal relationships that are independent of the first test, they can either affirm or dis-
confirm the new candidate diagnosis. It would be nonsensical to argue that the new 
diagnosis should be tested on a different patient to find out why the first patient is ill.

The second rationale for developing and testing a theory in the same case is more 
ambitious and contestable—it argues that it is legitimate to derive a theory from a 
piece of evidence in a case and to claim that this same evidence can be a severe test 
of the theory. In Bayesianism, it does not matter whether one first identifies an 
explanation and then assesses the likelihood of evidence under that explanation 
relative to rival explanations, or first derives a theory from evidence and then assess 
the relative likelihood of that evidence vis-à-vis the new explanation and its rivals. 
Evidence that is consistent with one explanation and inconsistent with its rivals is 
strong evidence in favor of the explanation, no matter when or how the explanation 
was derived (Fairfield and Charman, 2022). To use an analogy, if a detective thought 
an aggrieved business associate was the most likely suspect in a robbery, but then 
found a video recording of the crime scene showing a neighbor whom she had not 
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previously suspected carrying out the crime, the very evidence that turned attention 
to the new suspect would also be powerful evidence for a conviction. The counter-
point to the unqualified application of this view is that humans are subject to poten-
tial confirmation bias, and it may be harder to objectively assess the likelihood of 
less definitive evidence under alternative explanations once the evidence is known 
to be true. Either way, Bayesian logic dictates that when we develop a new explana-
tion or theory, we have to go back and re-evaluate all the evidence we gathered 
earlier, assessing its likelihood under the new theory in comparison to its likelihood 
under the theoretical explanations we had already considered.

8.3.3 � Best Practices in Process Tracing

This chapter outlines, in the section below, on new and future developments, more 
recent and formal Bayesian ways of carrying out PT. Here, it turns to pragmatic 
advice about best practices in both informal and formal Bayesian PT. These prac-
tices are summarized in Table 8.1 (from Bennett & Checkel, 2015:21), and briefly 
elaborated below.

8.3.3.1 � Cast the Net Widely for Alternative Explanations

It is important to consider a wide range of alternative explanations. Considering a 
few additional explanations that may quickly prove to be weak and deserving only 
of a footnote risks spending additional time and effort, but leaving out a viable 
explanation skews the analysis of the likelihood of the evidence and jeopardizes 
inferences from a case study. How do we know whether we have considered a 

Table 8.1  Best practices in PT

1. Cast the net widely for alternative explanations
2. Be equally tough on the alternative explanations
3. Consider the potential biases of evidentiary sources
4. Take into account whether the case is most or least likely for alternative explanations
5. Make a justifiable decision on when to start
6. Be relentless in gathering diverse and relevant evidence, but make a justifiable decision on 
when to stop
7. Combine process tracing with case comparisons when useful for the research goal and 
feasible
8. Be open to inductive insights
9. Use deduction to ask: ‘If the explanation is true, what will be the specific process leading to 
the outcome?’
10. Remember that conclusive process tracing is good, but not all good process tracing is 
conclusive

Source: Bennett and Checkel (2015)
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sufficiently wide range of alternative explanations? I present here several “check-
lists” of common sources of potential social explanations as a pragmatic guide.

First, we can look to “off-the-shelf” theories academics have applied to similar 
questions, participants’ and stakeholders’ explanations for events and outcomes, 
historians’ and area and functional experts’ explanations, and the implicit or explicit 
explanations offered by news reporters (Bennett & Checkel, 2015: 23).

Second, the literature on quasi-experiments and program evaluation identifies 
many general explanations to consider. These include the following5:

•	 Theory of change: the implicit or explicit theory that is the basis for a policy that 
seeks a change in outcomes.

•	 History: exogenous events (events outside of the scope of the theories or expla-
nations that a researcher is applying to a case) during the period under study that 
can affect outcomes (such as economic cycles, elections, natural disasters, 
wars, etc.).

•	 Maturation: individuals might go through aging processes that improve or 
degrade outcomes or policy effects over time.

•	 Instrumentation: changes in measurement instruments or technologies can affect 
the assessment of outcomes.

•	 Testing: exposure to testing or assessment can change the way stakeholders 
respond to events or policies.

•	 Mortality: there may be selection bias regarding which stakeholders or recipients 
drop out of a population being studied.

•	 Sequencing: the order in which events happen or program treatments are imple-
mented may affect outcomes.

•	 Selection: if acceptance into a program or population is not random—for exam-
ple, if the program chooses to address the easiest cases first (low-hanging fruit) 
or the hardest cases first (triage), there can be selection bias.

•	 Diffusion: if stakeholders interact with each other, this can affect results of a 
policy or program.

•	 Design contamination: competition among stakeholders can affect outcomes; 
those not selected as beneficiaries of a policy might try harder to improve their 
own outcomes, or they might become demoralized and not try as hard to succeed.

•	 Multiple treatments: if governments or other organizations are administering 
programs at the same time, or if a program being evaluated includes multiple 
treatments this can affect outcomes.

A third checklist of explanations to consider includes four kinds of agent–struc-
ture relations: (1) agents affecting structures; (2) structures enabling or constraining 
agents; (3) agent to agent interactions; and (4) structure to structure relationships 
(like demographic change). These four kinds of agent–structure relations intersect 
with three broad families of social and political theories focused on (1) ideas/

5 Many of these are discussed in Shadish et al. (2002); this same list is included, nearly verbatim, 
in Bennett, forthcoming.
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identities/social relations; (2) material resources and incentives; and (3) institutional 
transactions costs/functional efficiency. The resulting matrix encompasses 12 com-
mon kinds of theories. For example, the functional efficiency family of theories 
includes agents emulating other agents whom they view as successful, structures 
selecting out efficient agents as in evolutionary selection, functional competition 
among agents creating market or balance of power structures, and structure to struc-
ture processes like adverse selection (see Bennett, 2013; Bennett & Mishkin, 2023, 
for elaboration).

It is important to note that the requirement for mutual exclusivity among candi-
date explanations is often misunderstood (Bennett et  al., 2021, cfr. Zaks, 2020). 
Mutual exclusivity can always be set up by explanations that point to different inde-
pendent variables as the primary or most important variable in determining the out-
come—only one variable can be the main one. It can also take the form of 
explanations that draw on different variables, but this does not have to be the case. 
Mutual exclusivity does not require that explanations be monocausal, and it does 
not prohibit explanations that draw on some or even all of the same variables. 
Explanations can involve as many variables as a researcher wants, in any functional 
forms or relationships the researcher wants to specify. They can also use exactly the 
same variables but just pose different possible functional relations among them. For 
example, an internal combustion engine needs four things to function: fuel, oxygen, 
a spark, and compression. These same four things could produce failure to function 
in different combinations or functional relationships. It may be that an engine does 
not turn over because the spark plug and piston rings are both a bit worn, the fuel is 
low octane or has some contaminants, and the air intake is a bit clogged, in such a 
way that improving any one of these would be enough to get the engine to turn over. 
Or maybe, two of these components are fine and two are just faulty enough that 
together they prevent the engine from turning over.

In addition, the aspiration or claim to have achieved an exhaustive set of alterna-
tive explanations is always provisional. We can never be sure that the candidate 
explanations are exhaustive because it is always possible that the true explanation is 
one we have not considered or discovered. We cannot include an explanation we 
have not conceived. This is one reason that Bayesians are never 100% confident that 
they have identified the correct explanation for an outcome.

8.3.3.2 � Be Equally Tough on the Alternative Explanations

It is tempting to pick a “favorite” explanation early in a research project, but it is 
important to resist this temptation, as it can lead to confirmation bias. The alterna-
tive explanations should be plausible—if they are not plausible, they need to be 
reformulated or other explanations need to be considered. One of the ways that 
rigorous methods work is that they help us, or even force us, to guard against our 
own confirmation biases.

In PT, this takes the form of thinking through the observable implications for all 
of the hypotheses. This includes asking for each explanation “what would be the 
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observable implications about the process and sequence in the case if this explana-
tion is true”—a question that comes naturally due to the way our brains work. It also 
includes asking “what would be true if this explanation is false”—a question we 
might overlook if PT methods did not require us to address it.

It is also important to do PT in relatively equal depth on each of the alternative 
hypotheses. Otherwise, there is an inclination to favor one hypothesis or another 
and to keep looking for confirming evidence for that explanation until you find it, 
and to stop looking for PT evidence on the alternative explanations after finding one 
or a few pieces of evidence that make them less likely.

8.3.3.3 � Consider the Potential Biases of Evidentiary Sources

Documentary records can be biased by the preferences or instrumental goals of the 
people who made them regarding what they want to record, keep, and make avail-
able. Interviewees can have instrumental goals or motivated biases as well. They 
can also have unmotivated biases—recalled memories can be accurate, and the 
interviewee may have had access to some information streams and not others at the 
time of the events being studied. One way to take such potential biases into account 
is to discount the weight of evidence that could be subject to these biases.

8.3.3.4 � Consider Whether the Case Is Most or Least Likely 
for Alternative Explanations

This recommended practice relates to the estimation of the case-specific priors on 
the alternative explanations.

When an explanation has a high prior (a most-likely case), but there is strong 
evidence in the case that the explanation is not correct, this might not only affect our 
explanation of the case at hand—it might lead us to narrow the scope conditions of 
the failed explanation and lower its prior for similar cases. Conversely, if the evi-
dence from a case strongly supports an explanation that had a low prior, this might 
lead us to widen the scope conditions of this explanation and increase its prior for 
similar cases.

It is also useful at times to pick cases in which some of the explanations usually 
offered for the kind of case being studied simply cannot apply because their key 
variables or enabling scope conditions were not present. This can simplify the PT on 
such cases as it reduces the number of explanations on which PT is necessary.

8.3.3.5 � Make a Justifiable Decision on When to Start

As discussed above in the section on epistemology, there is no general rule for 
selecting the temporal starting point for a case study. Often, it is useful to start at a 
critical juncture at which a key choice was made among alternative policies or at 
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which a strong exogenous shock occurred. But the choice of a temporal starting 
point also depends on whether we want to study deep, structural, and often, slow-
moving causes or shorter-term, proximate causes that often relate more to agency 
than to structures.

Either way, the researcher must balance the costs and risks of going too far back 
in time, which increases the time and effort required for the PT, versus those of not 
going sufficiently far into the past, which risks overlooking important earlier causes 
that set in motion later mediating causes that explain less of the variation in out-
comes across cases.

8.3.3.6 � Be Relentless in Getting Diverse Evidence, but Make a Justifiable 
Decision on When to Stop

Here again there is no precise general rule: the researcher must balance the costs 
and risks of stopping the collection of evidence too soon, when a little more evi-
dence could have greatly changed our confidence in the explanations, versus those 
of stopping too late, which leads to wasted time and effort and little additional 
updating on the alternative explanations.

Bayesian logic adds a little more specificity to this broad advice, as it indicates 
that after you have examined a lot of the same kind of evidence, each additional 
piece of that kind of evidence has a low probability of surprising you or pushing you 
to update your beliefs on the likelihoods that alternative explanations are true. This 
is because similar evidence has already been taken into account or used for updat-
ing. However, different kinds of evidence that have not been so exhaustively exam-
ined are more likely to lead to significant updating on the alternative explanations.

8.3.3.7 � Combine PT with Case Comparisons if Relevant

While PT is a within-case method, it can be fruitfully combined with comparative 
case studies to strengthen causal inferences and clarify the scope conditions of 
explanations. A particularly powerful combination is the use of PT on “most-
similar” and “most-different” cases.

Most-similar cases are the same (or at least roughly the same)6 in the values of 
all but one of the independent variables and they have different values on the depen-
dent variable. This provides some evidence that the difference on the one indepen-
dent may cause the difference on the dependent variable, but this inference is 
provisional, since there may be other potentially causal factors that differ between 
the two cases and that are not included among the independent variables. It is thus 
useful to apply PT both to assess whether there is a pathway through which the 

6 Fully similar comparisons (comparisons between cases with roughly similar values on all the 
independent variables and on the dependent variable) are analogous to the “coarsened exact match-
ing” that some quantitative methods use. See the Chap. 4 herein.
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value on the independent variable that differs leads to the outcomes of the two cases 
and to assess whether the other potentially causal factors that differ do not lead to or 
cause the outcomes.

Conversely, a least similar case comparison involves two cases with the same 
value on the dependent variable and only one independent variable that has the same 
value. Here, PT can assess whether the common independent variable leads to the 
outcomes and whether other shared potentially causal factors do not.

8.3.3.8 � Be Open to Inductive Insights

PT is most efficient when the researcher first develops a set of candidate explana-
tions as described in (1) above and identifies their observable implications and the 
associated evidence to gather. The deductive effort this requires is quick and inex-
pensive compared to the field, interview, or archival work of actually gathering of 
the evidence. At the same time, it is important to remain alert for evidence that sug-
gests possible causal processes not included in the initial set of explanations.

The feeling of puzzlement or surprise at an unexpected or unanticipated piece of 
evidence can lead to the development of a new explanation of a case for which the 
researcher can identify new observable implications on which to seek evidence. For 
this reason, it is often useful to do some initial open-ended research on a case—a 
process that some have called “soaking and poking”—as researchers immerse 
themselves in a case.

This is not the same as trying to approach a case without preconceptions, as some 
suggest in the grounded-theory or other traditions7: soaking and poking is still pre-
ceded by developing a set of theories and unexpected evidence emerges against the 
background of those theories. In other words, we recognize it as puzzling because it 
does not fit any of our candidate explanations well. In practice, there can be many 
iterations between the explanations and the evidence (Fairfield & Charman, 2018).

8.3.3.9 � Use Deduction to Infer What Must Be True if a Hypothesis Is True

While deductively deriving the observable implications of a theory is fast and easy 
compared to gathering evidence, it is still challenging and contestable. Theories are 
usually not sufficiently detailed to immediately identify their observable implica-
tions in a particular case. This means that researchers and their readers or critics will 
not always agree on what the observable implications are for an explanation.

7 While scholars in the grounded theory approach recognize that approaching a case without pre-
conceptions is impossible, as our minds are pre-ordered by all kinds of theories and experiences, 
they nonetheless urge trying to do so as much as possible. The standard advice in the process trac-
ing approach is to instead develop and be explicit about candidate explanations, drawing on the 
sources identified above, and use them to decide which evidence to look for.
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The best that a researcher can do here is to be clear and explicit about the impli-
cations they derived from a theoretical explanation and the logic through which they 
derived them. It is also possible to entertain alternative readings of the implications 
of a theory, and to factor into the conclusions whether some or all of these proved 
true. If the evidence was consistent with both of two possible interpretations of a 
theory, for example, then the theory is likely to be true regardless of which interpre-
tation one uses.

To identify observable implications, it is necessary to mentally inhabit the hypo-
thetical world in which the explanation is true and imagine very concretely the 
specific steps, sequences, and processes through which the explanation’s indepen-
dent variable(s) could have generated the outcome.8 Often, researchers are not suf-
ficiently concrete and specific in thinking about who should have said or done what 
to whom when if an explanation were true. There can also be functionally equiva-
lent substitutable steps at different points in the hypothesized process. If possession 
of a gun was necessary for a suspect to have committed a crime, for example, evi-
dence that the suspect had purchased a gun is equally informative no matter whether 
the gun was paid for by check or credit card.

8.3.3.10 � Remember Not All PT Is Conclusive

A final injunction is to remember that not all PT is conclusive. Whether it is highly 
conclusive depends on whether the evidence is much more likely under one expla-
nation than under the others, and this cannot be known beforehand. In addition, 
even when the evidence does greatly raise the likelihood that one explanation is 
true, there is always some possibility that an even more accurate explanation never 
occurred to the researcher.

For these reasons, process tracers can never be 100% certain, and it is important 
to be clear about any uncertainty that remains after analyzing the evidence. In the 
formal Bayesian PT approach described below, this takes the form of specifying the 
posterior on each hypothesis in terms of an explicit probability or range of 
probabilities.

8.3.4 � Examples from COVID Case Studies

While laboratory studies on the COVID-19 coronavirus have led to a rapid accumu-
lation of knowledge about its biochemistry, case studies using a PT logic have been 
vitally important in learning about its transmission in real-world settings, where 
experiments are not possible. When COVID-19 first emerged as a public health 

8 Fairfield and Charman (2017) suggest this practice of mentally inhabiting the world of a hypoth-
esis to help assess the likelihood of evidence under that hypothesis; it is also useful in deciding 
what evidence to look for in the first place.
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concern, doctors, scientists, and government officials had limited knowledge of how 
the disease spread. It is easy in this instance to construct mutually exclusive and 
exhaustive means of transmission: (1) airborne inside only; (2) airborne inside and 
outside; (3) airborne inside plus transmission via common contact surfaces; or (3) 
airborne inside and outside plus infection through contact surfaces.9 Epidemiologists 
had a range of views on what prior likelihood they should assign to each hypothesis, 
but in the end the priors did not matter much because powerful evidence emerged 
that was much more likely under explanation 1, rather than under explanations 2–4, 
as by far the most common means of transmission.

A key early case study came from a restaurant in Guangzhou, China, where one 
patron who had COVID dined on January 24, 2020 with three family members. Two 
other families dined at adjacent tables. Within 5 days, nine members of the three 
families developed COVID, with no other known exposures apart from the restau-
rant and subsequent within-family transmission. Close study of the restaurant seat-
ing revealed that, outside of the index patent’s family, only those in the airflow path 
of the air conditioner that blew air across the table of the index patient developed 
COVID, while none of the other 83 restaurant patrons or eight staff developed 
COVID. The authors of a study on this case concluded that droplet transmission in 
the air-conditioner airflow was likely the key transmission mechanism, and recom-
mended improved ventilation and greater table distancing in restaurants. The 
absence of any cases among the restaurant staff who handled the index patient’s 
dirty dishes can be considered a failed smoking-gun test: it slightly reduces the 
likelihood of transmission of coronavirus through contact with surfaces of objects 
(Lu et al., 2020).

A later case study of a superspreader event at a choir practice in March 2020 
underscored the danger of air transmission inside. Of the 61 people who attended 
the 2.5-hour practice, including one symptomatic index patient, 32 confirmed and 
20 probable secondary COVID-19 cases occurred. The study concluded that close 
proximity and the act of singing led to high rates of transmission (Hamner 
et al., 2020).

The most definitive case study of COVID transmission, however, came from an 
event that provided a strong natural experiment (Shen et al., 2020). In January 2020, 
128 people took two separate buses with recirculating cooling units (60 people in 
the first bus and 68 in the second, including a symptomatic index patient in the sec-
ond bus) on a 100-minute round trip ride to a 150-minute event. Another 172 indi-
viduals attended the event but did not travel on either bus. None of the attendees 
wore masks. At the event, participants attended a morning service outdoors, fol-
lowed by a brief lunch inside. They then returned to the same bus that had brought 
them, and took the same seats. Within days, 23 people on the second bus developed 
COVID, none of the passengers of the first bus developed COVID, and another 

9 While some lung diseases, like Legionnaire’s disease, can grow in bodies of water and then most 
commonly infect people through inhalation of contaminated aerosols, and other diseases like 
Ebola are transmitted by direct contact with bodily fluids, early cases of COVID and its similarity 
to other coronaviruses strongly suggested transmission by air and possibly also by contact surfaces.
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seven individuals who were in close contact with the index patient at the ceremony 
or lunch but who had not ridden by bus developed COVID. Passengers seven rows 
behind the index patient on the bus developed COVID, while passengers next to 
windows that could be opened had lower rates of infection. This case provided fur-
ther smoking gun evidence of air transmission in long exposure indoors, including 
transmission by small and relatively far-traveling aerosol droplets as well as heavier 
droplets. Later studies concluded that while transmission through surface contacts 
could not be ruled out, and that cases of such transmission have been reported when 
individuals touched an object that had been sneezed or coughed upon by a COVID 
patient, the odds of catching COVID were approximately one case for every 10,000 
surface contacts (CDC, 2021). Similarly, while the bus study did not discuss out-
door transmission and such transmission could not be ruled out due to the seven 
individuals who developed COVID without riding a bus, the rarity of confirmed 
cases of outdoor transmission has reportedly led many experts to conclude that such 
cases constitute only 1% of total cases and perhaps as low as 0.1% (Leonhardt, 2021).

A fourth case study indicates the high efficacy of mask-wearing to prevent 
COVID transmission. This study focuses on two hair stylists in Missouri who con-
tracted COVID in 2020. While these individuals were symptomatic, they were in 
proximity to 139 patrons indoors. All wore masks, and none of the patrons devel-
oped COVID (Hendrix et al., 2020).

Although these four studies use the logic of PT implicitly rather than explicitly, 
their conclusions follow Bayesian logic. The authors intuitively used the likelihood 
of evidence under alternative explanations, together with the laws of probability, to 
update views of the likelihood of alternative COVID transmission paths in light of 
the evidence.

The chapter turns in the penultimate section to new methodological develop-
ments and the question of whether using the Bayesian logic of PT more formally 
and explicitly improves inference to the best explanation.

8.4 � The “Replication Crisis” and the Comparative 
Advantages of Process Tracing Case Studies

8.4.1 � The Replication Crisis

In the last 15 years, concerns over a “replication crisis” have swept through the 
social and medical sciences and the policy analysis and program evaluation com-
munities. The crisis centers on the concern over high rates of failure in attempts to 
replicate peer-reviewed research findings in medicine and the social sciences, 
including those based on experiments as well as observational statistical studies. 
This does not necessarily mean that studies whose findings cannot be replicated are 
wrong—there are many reasons it may not be possible to replicate a study or its 
findings, including changes in the historical context that make it impossible to 
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recreate the same sample as that in the original study. Yet there is also evidence that 
such sample differences do not account for much of the variation in results found in 
replication failures (Klein et al., 2018). In addition, there are well-known method-
ological problems that can lead to false or overly confident conclusions that could 
account for the high rate of replication failures of published research. These prob-
lems include publication bias (papers supporting their hypotheses are published at a 
higher rate than those that do not and a higher rate than studies with null findings), 
“p-hacking” (manipulation of experimental and analysis methods, possibly unwit-
ting, that artificially produces statistically significant results [see Chap. 4 herein, 
especially Sect. 4.2.3, on the model dependence of statistical analyses]),10 “p-
fishing” (seeking statistically significant results beyond the original hypothesis), 
and “HARKing” (Hypothesizing After the Results are Known, or post-hoc refram-
ing of experimental intentions to fit known data).

One result of the replication crisis has been renewed emphasis on lab experi-
ments, field experiments, natural experiments, regression discontinuity designs, and 
other research designs that attempt to allow causal identification. Even though 
experiments are among the methods that have experienced replication problems, 
and even though they have very demanding requirements and assumptions (espe-
cially field experiments: Cook, 2018), properly done experiments are less subject to 
some of the methodological limits of observational statistical studies. “Natural 
experiments,” or real world situations in which samples of a population are assigned 
to or end up in two different contexts or “treatment” conditions in a way that is 
random or close to random, can also be powerful. Another approach that has gener-
ated increased attention is regression discontinuity designs, in which the investiga-
tor compares samples of a population just above and just below a threshold that is a 
cutoff at which a treatment, such as class size in public schools, is assigned (see 
Chap. 3 herein).

These experimental and quasi-experimental methods all have important roles to 
play in policy-relevant causal inferences. Researchers and journal editors have also 
taken steps to address the problems associated with the replication crisis. Pre-
registration of research designs, for example, limits the risk that researchers might 
unintentionally make so many modifications to their models that one model will 
produce a high degree of fit just by chance. Public repositories for data and replica-
tion materials are making research more transparent. Researchers have become 
more transparent about the assumptions behind instrumental variable and regression 
discontinuity designs and the conditions under which these achieve internal, 

10 The p-value, or probability value, tells you how likely it is that your data could have occurred 
under the null hypothesis. In other words, it tells you the probability of obtaining a test statistic as 
extreme or more extreme than the one calculated by your statistical test under the assumption that 
the null hypothesis is correct. It gets smaller as the test statistic calculated from your data gets 
further away from the range of test statistics predicted by the null hypothesis. A p level of 5% has 
by convention been considered in many journals to be the threshold for publishing results: this 
means, however, that there is still a 5% chance to see a test statistic at least as extreme as the one 
you found if the null hypothesis was correct.
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statistical, and external validity (see Chap. 3 herein, especially Sect. 3.3). Some 
journals are carrying out replications before publication. Matching techniques (see 
Chap. 4 herein) and out-of-sample testing have become more common, and some 
journals have de-emphasized p-values in favor of a broader range of measures of the 
robustness of quantitative results, or moved to p-values of 1% rather than 5% as the 
standard for publication.

Still, even with improved practices, experimental and quasi-experimental meth-
ods have limits that are different from those of PT. For many problems of interest to 
both scholars and policymakers—wars, epidemics, economic crashes, etc.—these 
methods can be subject to practical and ethical constraints and problems of internal 
or external validity. Lab experiments are quite different from real world conditions. 
Field experiments on large-scale phenomena that involve potential harm are unethi-
cal, and other kinds of field experiments may be prohibitively costly or operation-
ally impossible. Natural experiments require a level of “as-if random” assignment 
to “treatment” and “control” groups that is rarely fully met except in studies of lot-
tery winnings (Dunning, 2015). Regression discontinuity designs, as well as field 
and natural experiments, have the challenge of assessing potential confounding 
variables. In addition, all population-level analyses face the ecological inference 
problem.

Because case studies using PT have a different set of comparative advantages 
from those of experimental and quasi-experimental research designs, they are useful 
as both a standalone method and as a complement to these other methods in multi-
method designs. Most obviously, PT is useful when policymakers are interested in 
understanding causation in individual cases. PT can be especially useful in studying 
deviant cases, or cases that do not fit existing theories, and inductively deriving and 
then assessing new potential explanations. But PT case studies are not just for situ-
ations in which we want to explain outcomes in one or a few cases, or when only a 
small number of cases exist. Even when there is a large and relatively homogenous 
population available for statistical or experimental study, case studies can help get 
closer to causal mechanisms, examining how they work down to small slices of 
space and time.

8.4.2 � Process Tracing on Complex Phenomena

In addition, PT is useful for assessing various kinds of complexity. These include 
the following:

•	 Endogeneity. Endogeneity arises when there are feedback loops between the 
dependent and independent variables and when the direction of causation (X → Y 
versus Y → X) is unclear. In this regard, PT helps untangle the direction of causa-
tion by focusing on the sequence of events. This helps with the assessment of 
which events or pieces of information came first, and what events actors may 
have anticipated when they took action.
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•	 Multiple treatments. PT can assess multiple treatments or explanations by con-
sidering the likelihood of evidence under each of them.

•	 Path dependence. PT can untangle path dependence by examining the sequenc-
ing of events and the observable implications of theories about path-dependent 
mechanisms like positive returns to scale, learning by doing, first mover advan-
tages, complementary institutions, and so on (Bennett & Elman, 2006). Most, if 
not all, of the research on path-dependency uses PT case studies rather than 
quantitative analysis.

•	 Equifinality. Equifinality is the existence of alternative paths to the same out-
come. These paths may have many or no independent variables in common. Case 
studies using PT can chart out different paths to the outcome one case at a time.

•	 Non-independence of cases. PT can assess the evidence on mechanisms that cre-
ate dependences among cases, such as learning or emulation from one case to 
another.

•	 Potential confounders. PT can assess whether any potential confounders identi-
fied in the course of research have a causal path to the outcome.

8.4.3 � Process Tracing in Multimethod Research

PT can also be combined with other methods. One useful approach is to carry out a 
statistical analysis on observational data and then process trace one or a few cases 
to see if the hypothesized mechanisms that might explain population level correla-
tions are evident in individual cases (Lieberman, 2005; Small, 2011). Statistical 
analysis can help identify outlier or deviant case, and PT on these cases may help 
identify omitted variables (Bennett & Braumoeller, 2022). In natural experiments, 
PT, on the ways in which different individuals or groups are “assigned” to or end up 
in the “treatment” and “control” groups, can help assess the validity of the assump-
tions of “as-if random assignment,” unbiased dropout rates, and no unmeasured 
confounders (Dunning, 2015). PT can be combined with Qualitative Comparative 
Analysis as well, helping to identify the potentially causal processes that generate 
the outcomes of individual cases (Schneider & Rohlfing, 2013).

8.4.4 � Process Tracing and Generalizing from Case Studies

One alleged limitation of PT case studies is their supposed inability to generalize 
from their results, or to achieve external validity. This issue has often been misun-
derstood, however (George and Bennett, 2005; Bennett, 2022). “Average treatment 
effects” are not the only way to conceptualize generalization, and they are not 
always the most useful ones. The “average treatment effect” of being born, for 
example, is having 1.5 X chromosomes and 0.5 Y chromosomes, an outcome that 
does not exist for any single person. Sometimes it is useful instead to have narrow 
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but strong “contingent generalizations,” or generalizations that apply to only a few 
cases or to a specified subset of a population, such as cases that share similar values 
on the independent variables and the dependent variable.

Single and comparative case studies using PT may or may not allow contingent 
generalizations. It is impossible for a researcher to know whether and to what popu-
lation or scope conditions the findings of a case study will generalize before they 
have developed, perhaps partly inductively, a satisfactory explanation of the case. 
The understanding of the causal process that emerges from PT in a case study, 
together with theoretical intuitions on the scope conditions in which it operates and 
background knowledge on the frequency with which those conditions arise, is what 
determines whether, where, and how a case study’s findings might generalize. 
Charles Darwin, for example, studied several bird species on remote islands and 
came away with the theory of evolution, whose scope conditions include all living 
things. Conversely, imagine discovering that a voter favored a candidate not because 
of party affiliation, ideology, or any of the usual reasons, but because the candidate 
was the voter’s sister-in-law. This would only generalize to the relatives of candi-
dates, or perhaps more loosely to social relations not ordinarily considered to be 
important to voting decisions (and some voters might vote against their in-laws 
despite sharing their party affiliations and policy views!).

In addition, the understanding of causal mechanisms that emerges from PT on a 
case, to the extent that this understanding is accurate, may generalize not only to 
similar cases or populations but to populations and contexts different from those of 
the case study at hand. As noted above, Darwin’s theory of evolution applied not 
only to birds but to all living creatures. This is different from testing or applying a 
theory to an out-of-sample subset of a population, as is sometimes done in statistical 
analyses; it is applying a theory to an out-of-population case or sample.

8.4.5 � Limitations of Process Tracing

The limitations of PT correspond with the strengths of experimental, quasi-
experimental methods and studies using statistical analyses of observational data. 
PT does not produce estimates of average effects, or correlation coefficients of inde-
pendent variables. PT can shed light on how or through what mechanisms indepen-
dent variables generated outcomes, but its inferences are more provisional and do 
not necessarily produce as confident an answer as randomized controlled experi-
ments on whether a variable has an effect on the outcome.

8.5 � New Developments in Process Tracing

Two new methodological developments are pushing the frontiers of process tracing. 
Both developments are outlined in forthcoming books, and both are rather technical 
and complex, so this chapter provides only a brief overview of each.
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8.5.1 � Formal Bayesian Process Tracing

Tasha Fairfield and Andrew Charman have worked out several methodological chal-
lenges to develop procedures for formal Bayesian PT (Fairfield & Charman, 2017; 
Fairfield & Charman, 2022). In formal Bayesian PT, researchers develop explicit 
numerical priors, between 0 and 1 or 0% and 100%, on the likelihood that alterna-
tive explanations are true (these could be ranges between high and low bounds, 
rather than point estimates). They also identify explicit numerical likelihood ratios 
for evidence conditioned on the alternative theories (which, again, need not be point 
estimates), and use these, together with Bayesian analysis of the collected evidence, 
to arrive at numerically explicit posterior estimates on the likelihood that alternative 
theories are true. Estimates of priors can be based on background information, on 
crowd-sourcing, or on a principle of indifference that assigns equal prior probability 
to all explanations. Estimates of likelihood ratios of evidence come from the theo-
retical logic of the alternative explanations. Researchers can check on the robust-
ness of the posterior estimates by trying different distributions or ranges of priors 
and likelihood ratios.

One useful innovation that Fairfield and Charman introduce is the use of a loga-
rithmic scale for the likelihood ratios of evidence. This simplifies the math, as loga-
rithms allow adding the weight of different pieces of evidence rather than using 
multiplication. In addition, logarithmic scales, such as the decibel (db) scale, reflect 
the ways in which humans experience stimuli such as light or sound. It is intuitively 
easy to ask if a piece of evidence is “whispering” (30 db), “talking” (60 db), “shout-
ing” (70–80 db), or “screaming” or above (90+ db) in favor of one explanation or 
another. After assigning logarithmic weights to how much each piece of evidence 
argues in favor of one explanation vis-à-vis another, the researcher can simply add 
up all of the weights to arrive at posterior estimates, just as if adding weights on 
a scale.

A common misunderstanding here is that the number of necessary comparisons 
of theories vis-à-vis the evidence becomes combinatorially large as the number of 
explanations grows (Bennett et  al., 2021; cfr Zaks, 2021). This assumes that the 
likelihood for each piece of evidence under every hypothesis must be compared 
directly to that of every other hypothesis. In fact, it is necessary only to compare the 
likelihood of each piece of evidence for one explanation to that of each of the other 
explanations, and this implicitly compares the likelihood of the evidence under all 
the explanations to each other. By way of analogy, one could weigh a watermelon in 
terms of strawberries, and then weigh all the other fruits in a store in terms of straw-
berries, and this would provide the relative weight of every fruit in terms of either 
watermelons or strawberries.

Formal Bayesian PT has the advantage of making explicit all the judgements that 
are made implicitly in informal PT. This clarifies where and why an author and their 
readers or critics might disagree: they could disagree on the priors, on the likelihood 
of evidence, or on the reading of the evidence itself (one person may think a person 
interviewed in a research project is untruthful, for example, and another may not). 
Despite the advantages of formal Bayesian PT, however, its advocates do not 
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recommend doing it fully on every piece of evidence for every hypothesis. Doing so 
requires an unrealistically long and tedious write-up of research results. Researchers 
may find it useful, however, to carry out full formal Bayesian analysis on a small 
number of pieces of evidence that they consider to be the most powerful in discrimi-
nating among the hypotheses. In addition, even though it is inadvisable to fully 
carry out and write up formal Bayesian PT, the demonstration that it is in principle 
possible to do so, and the explication of the logic of doing so, help guide the reason-
ing of informal or partially formal Bayesian PT.

8.5.2 � New Modes of Multimethod Research

A second innovation, in an article and a forthcoming book by Macartan Humphreys 
and Alan Jacobs, also builds on Bayesian logic and moves in a compatible but dif-
ferent direction. Humphreys and Jacobs use formal causal models, in the form of 
Directed Acyclic Graphs (DAGs), to help identify the hypothesized probabilistic 
dependencies among variables that enter into PT (Humphreys & Jacobs, 2015; 
Humphreys and Jacobs 2023; on DAGs, see also Chap. 6 herein). These authors 
argue, as the present chapter has, that design-based inferential approaches like 
experimental and quasi-experimental methods cannot be carried out on many ques-
tions that interest both policymakers and scholars, and that these methods can some-
times provide information on effect sizes without clarifying the underlying models 
or mechanisms. Consequently, Humphreys and Jacobs focus on model-based infer-
ence rather than design-based inference.

DAGs are models that formally represent theories in ways that make these theo-
ries’ assumptions about mediating, moderating, and potential confounding vari-
ables clear and precise. Put another way, DAGs are graphical representations of 
Bayesian networks. Mediators are variables along the hypothesized causal path 
between an independent and dependent variable, so they help explain how the inde-
pendent variable affects the dependent variable. Moderators are variables that affect 
the relationship between an independent variable and the dependent variable—they 
can strengthen, weaken, or negate that relationship. Confounders are variables that 
affect both the value of an independent variable and that of the dependent variable 
in a causal model, making it hard to estimate the true effect of the independent 
variable.

Humphreys and Jacobs argue that the core logic of their approach is most closely 
connected to PT and Bayesian inference, and they maintain that formally represent-
ing theories as DAGs helps guide methodological choices in both PT and quantita-
tive analysis in ways that modify some traditional advice about how to carry out 
PT. Contrary to some earlier advice on case selection, for example, they argue that 
model-based inference demonstrates that for many inferential purposes “on the 
regression line” cases, or cases in which the outcome of interest occurred, are not 
necessarily the most informative. Optimal case selection, in their view, depends on 
the population distribution of different kinds of cases and the probative value of the 
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available evidence. They also argue that the focus on intervening causal chains 
(mediators) in PT can sometimes be less productive than examining moderating 
conditions (moderators). Finally, DAGs can inform choices in multimethod work 
between breadth (how many cases to study) and depth (how intensively to study 
individual cases).

More generally, Humphreys and Jacobs argue that their approach dissolves the 
usual distinctions between qualitative and quantitative research, and that it can 
address and integrate case level and population level queries.

8.6 � Conclusions

PT methods have many uses and comparative advantages. Unlike experimental and 
quasi-experimental and statistical methods, they can develop inferences on alterna-
tive explanations of individual cases. As PT is always on observational evidence in 
single cases, its scope is not as limited by cost, ethical concerns, or availability as 
experiments or quasi-experiments (although, to the extent that PT involves human 
subjects research such as interviews, it can raise ethical issues that require approval 
from an Institutional review board). PT brings causal inference close to the opera-
tion of causal mechanisms, sometimes in relatively small slices of space and time. 
While it is the only method (other than ethnographic methods) that is possible when 
one or a few cases exist, it is still useful for illuminating the operation of causal 
mechanisms and assessing the assumptions behind other methods even when large 
or randomly assigned populations are available for study. It can therefore contribute 
to multimethod projects involving statistical, experimental, and quasi-experimental 
methods.

At the same time, PT has several limitations and poses a number of research 
challenges. Collecting the necessary evidence can be laborious and time-consuming, 
and the conclusions can only be as strong as the evidence allows. Identifying the 
observable implications of alternative explanations requires careful thought, and 
scholars might not agree on what rather general theories imply about such implica-
tions in particular cases. PT case studies may allow strong contingent generaliza-
tions, or they may not. More broadly, just as the strengths of PT arise in areas where 
quantitative methods are weak, PT is weak where these other methods are strong. 
PT does not produce estimates of average effects, or correlation coefficients of inde-
pendent variables. It can shed light on how or through what mechanisms indepen-
dent variables generated outcomes, but its inferences do not necessarily produce as 
confident an answer as randomized controlled experiments on whether a variable 
actually had any effect on the outcome. Yet precisely because the strengths and 
weaknesses of PT and quantitative methods offset each other, there is great value in 
combining these approaches in multimethod research.

Recent innovations by Fairfield, Charman, Humphreys, and Jacobs hold great 
promise for continuing the recent and rapid improvement of PT methods and 
practices.
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These authors’ ambitious innovations are at the cutting edge of PT techniques. 
As such, they have thus far been of interest mostly to methodologists and have not 
yet had a chance to be taken up by the much larger community of case study 
researchers. In short, although PT methods and practices are in some senses thou-
sands of years old, they will continue to develop.

Review Questions
	 1.	 What are the differences among the neo-Humean regularity, counterfactual, 

manipulation/experiments, and the causal mechanism accounts of causation 
and causal inference?

	 2.	 What is a ‘prior’ in Bayesian terms? What is a ‘posterior?’ What is the ‘likeli-
hood of evidence’ and how does it help us ‘update’ our prior to form our poste-
rior? What kind of evidence allows the most updating?

	 3.	 Why is it important to ‘cast the net widely’ when formulating potential alterna-
tive explanations for the outcome of a case? How can you combine process 
tracing with case comparisons? Why are Bayesians never 100% sure they have 
the true explanation for an outcome?

	 4.	 What does it mean for alternative explanations to be ‘mutually exclusive and 
exhaustive?’ Does mutual exclusivity require that the explanations use com-
pletely different independent variables?

	 5.	 What does each of the following terms mean in the context of process tracing: 
Theory of change, History, Maturation, Instrumentation, Testing, Mortality, 
Sequencing, Selection, Diffusion, Design contamination, Multiple treatments.

	 6.	 Why is it important to pay attention to surprising or unexpected evidence 
from a case?

	 7.	 How can process tracing be combined with comparisons between cases?
	 8.	 What kind of conclusions can be drawn from the following case studies, and 

how does process tracing logic lead to these conclusions: (1) the transmission 
of COVID in an air-conditioned restaurant; (2) the spread of COVID at a choir 
practice; (3) the spread of COVID in one bus attending a ceremony and lunch 
but not the other bus; (4) the lack of transmission of COVID at a hair-dressing 
shop where two hairdressers had symptomatic COVID?

	 9.	 What are the meanings of the following terms for kinds of complexity: indige-
neity, path dependence, equifinality, multiple treatments, non-independence of 
cases, potential confounders? How can process tracing help untangle each of 
these kinds of complexity?

	10.	 How can process tracing be combined with statistical analysis of observational 
data? With quasi-experiments?

	11.	 Under what conditions is it possible to generalize the results of a case study, 
and under what conditions is it not possible to do so?

	12.	 How does formal Bayesian process tracing differ from less formal methods of 
process tracing? Is it advisable to do and write up formal Bayesian process trac-
ing on every piece of evidence in a case study? Why or why not?

	13.	 What is a Directed Acyclic Graph and how can it assist in process tracing and 
the integration of qualitative and quantitative evidence?

	14.	 What are the limits and costs of process tracing?
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Chapter 9
Exploring Interventions on Social 
Outcomes with In Silico, Agent-Based 
Experiments

Flaminio Squazzoni and Federico Bianchi

Abstract  Agent-Based Modeling (ABM) is a computational method used to exam-
ine social outcomes emerging from interaction between heterogeneous agents by 
computer simulation. It can be used to understand the effect of initial conditions on 
complex outcomes by exploring fine-grained (multiple-scale, spatial/temporal) 
observations on the aggregate consequences of agent interaction. By performing in 
silico experimental tests on policy interventions where ex ante predictions of out-
comes are difficult, it can also reduce costs, explore assumptions and boundary 
conditions, as well as overcome ethical constraints associated with the use of ran-
domized controlled trials in behavioral policy. Here, we introduce the essential ele-
ments of ABM and present two simple examples where we assess the hypothetical 
impact of certain policy interventions while considering different possible reactions 
of individuals involved in the context. Although highly abstract, these examples 
suggest that ABM can be either a complement or an alternative to behavioral policy 
methods, especially when understanding social processes and exploring direct and 
indirect effects of interventions are important. Prospects and critical problems of 
these in silico policy experiments are then discussed.

Learning Objectives
By studying this chapter, you will:

•	 Learn the basic concepts and methodological principles of agent-based modeling.
•	 Understand the advantages of agent-based modeling compared to other research 

methods when examining social dynamics.
•	 Understand how to design agent-based modeling for in silico experiments.
•	 Understand the importance of agent-based modeling for policy appraisal.
•	 Practice with two examples of agent-based modeling for policy experiments.
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9.1 � Introduction

Behavioral science methodology, including randomized controlled trials (RCTs), is 
increasingly being used in public policy as a gold standard to estimate causal rela-
tionships between interventions and outcomes (e.g., Shafir, 2012; Straßheim & 
Beck, 2019). Examples of behavioral policies, from public health to education, have 
shown the malleability of individual preferences and decisions, as well as the sensi-
tivity of targeted individuals to cognitive frames in responding to policy interven-
tions (Galizzi & Wiesen, 2018). The profound non-linear relationships between 
policy stimuli and observable and measurable people’s responses, which impinge 
the mantra of ‘big stimuli vs. big outcomes’ of conventional policy (Squazzoni, 
2014), has suggested that if well-conjectured and ‘incentive compatible’, even mini-
mal interventions could cause large-scale outcomes (Dolan & Galizzi, 2014).

The reason why RCTs are considered the “gold standard” in behavioral policy is 
that random assignment of a representative, targeted population to control and treat-
ment groups, differing only in their manipulated conditions and the identification of 
any controllable, salient confounding factors by ex ante design, are instrumental to 
estimate causal effects. However, besides fundamental criticism on the often 
neglected influence of implicit assumptions on unobservable processes in research 
design (e.g., Imai et al., 2008), the use of experimental methods for public policy 
has also important pragmatic limitations.

On the one hand, whenever feasible, RCTs for public policy purposes could have 
a negative benefit-cost ratio. Indeed, ethical obstacles can prevent group selection or 
the exploration of conditions that would introduce inequality and negative externali-
ties for certain groups. Secondly, economic costs are often severe even for small-
scale pilots. Furthermore, the intrusive, ‘outside-in’ nature of experimental policies 
can affect real-life outcomes and people’s behavior in other domains beyond any 
intended purpose. This is indeed a fundamental problem: not only do people often 
react unpredictably and adaptively to interventions (note that this has been a key 
argument for supporters of behavioral policies against the traditional policy frame-
work based on positive/negative incentives and ‘rational’ response), individuals are 
also embedded in social contexts so that their exposure to policy treatments can 
trigger positive and negative network externalities or knowledge spillovers, which 
might also affect outcome measurements (Dolan & Galizzi, 2015; Squazzoni, 
2017). Disentangling any established causal effect between interventions and out-
comes in such situations is difficult.

Finally, as suggested by Battistin & Bertoni in Chap. 3, inferences on causal 
effects of policy interventions would require counterfactual procedures to assess 
what would have happened to the estimated outcomes had these interventions not 
taken place. Besides the difficulty of isolating a control group in social reality and 
introducing a placebo-like neutral information in behavioral policies, endogenous 
social forces and processes cannot be suspended during a policy experiment. 
Treating data in a quasi-experimental way by randomization, instrumental variation 
and discontinuity design can increase the robustness of estimates, thus improving 
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the internal and external validity of causal inferences. Here, we suggest a comple-
mentary strategy: the use of agent-based modeling (ABM) as in silico experiments 
accompanying, augmenting, or even substituting RCTs—whenever needed—in the 
traditional toolbox of the experimentalist policy analyst.

This policy function of ABM is key especially when: (a) there are no or insuffi-
cient empirical data on which to corroborate estimated causal relationships and per-
form ex post, counterfactual assessments; (b) the economic, social, or political costs 
of RCTs for policy appraisal or assessment are hardly sustainable; (c) ‘social exper-
imenters’ are interested not only in estimating outcomes but also understanding 
generative processes; (d) there is added value in exploring extreme, boundary, or 
counterfactual conditions that either do not exist in reality or have not yet occurred 
but in principle could. In all these cases, we argue that ABM is the only alternative 
to ex post observational analysis to explore and quantify hypothesized relationships 
between policy interventions and social outcomes. What is lost in terms of empirical 
realism is gained in terms of understanding the possible generative processes.

Reviews on recent applications of ABMs in various fields, from public health 
(Giabbanelli et al., 2021; Tracy et al., 2018) to agriculture (Kremmydas et al., 2018) 
and energy consumption (Klein et al., 2019), have shown that ABM is particularly 
suitable for providing insights into causal mechanisms, potentially linking interven-
tions to outcomes. By generating “artificial data” via computer simulation, models 
can help to: (a) explore cases of multiple realizability (i.e., the same effect generated 
by different social causes and paths), (b) build ‘what-if’ scenario analysis that sup-
ports inferences about interventions-outcomes without impacting the targeted popu-
lation; (c) estimate ‘interference’, network effects and spillovers of policy 
interventions (e.g., the situation in which one individual’s exposure affects other 
individuals’ outcomes); and (d) measure possibly multiple direct and indirect out-
comes of the same intervention (Chalabi & Lorenc, 2013; Murray et  al., 2021; 
Powell et al., 2017).

While most research has outlined the differences between ABM and more con-
ventional policy approaches and methods, e.g., RCTs (e.g., Gilbert et  al., 2018), 
here we would like to discuss complementarities and potential synergies between 
various experimental approaches. Indeed, as exemplified by Bravo et al. (2012), by 
using the computer as an ‘artificial experimental environment’, model parameters 
can be calibrated on existing individual (experimental) data to perform in silico 
counterfactual tests on any established causal relationship by quantifying the effect 
of varying initial conditions, especially those that could not be estimated empiri-
cally. What could happen to the observed causal relationship between A (interven-
tion) and B (outcome), if certain hypothesized conditions C (either observable or 
not) were different? Why would A necessarily lead to B given that C may include 
adaptive, unpredictable individual behavior? As suggested by Manzo (2022), this is 
not only a problem of internal vs. external validity of estimated relationships (the 
effect of A on B would be contingent to a specific empirical instance with all due 
problems of generalization). It implies a search for causal or dependence relation-
ships of interest not only within data but also via formalized models of “generative 
mechanisms” that consider mediating behavior and processes on which we might 
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not have any data. Why and how, when exposed to A and under interaction effects 
that typically occur in social contexts, would individuals behave in such a way to 
‘cause’ the emergence of B?

The rest of the chapter is organized as follows: In Sect. 9.2, we provide a brief 
introduction to ABM, by highlighting their specificity compared to other modeling 
approaches. In Sect. 9.3, we present some hypothetical policy cases on which the 
advantages of ABM can be understood. Model code is provided to help the reader 
to understand the potential of ABM for: (1) exploring the effect of parameter varia-
tions on the emergence of social outcomes; (2) building alternative scenarios to 
understand the effect of individual reactions on social outcomes. In Sect. 9.4, we 
summarize the main contributions of the chapter and discuss critical points and pos-
sible developments. Indeed, besides the (many) positive aspects, ABM has also cer-
tain weaknesses, including problems of model resolution, empirical validation, and 
external validity, which all require careful scrutiny.

9.2 � Agent-Based Modeling

Agent-based modeling is a “computational method that enables a researcher to cre-
ate, analyze, and experiment with models composed of agents that interact within an 
environment” (Gilbert, 2008). Agents may represent individuals, households, orga-
nizations, or any other entities, whose actions depend on conditional or stochastic 
decision-making rules (Bianchi & Squazzoni, 2015; de Marchi & Page, 2014; Macy 
& Willer, 2002; Tesfatsion & Judd, 2006). Agents can adapt their behavior in 
response to their own experience (e.g., learning), the interaction with other agents 
or in response to changes in the environment—e.g., policy interventions (Gilbert & 
Troitzsch, 2005; Squazzoni, 2012; Tracy et al., 2018).

As dynamic and process-based, ABMs are ideal to study the effects of complex 
interactions between micro- and macro-levels by exploring ‘generative explana-
tions’ of social outcomes (Epstein, 2006; Hedström & Bearman, 2009; Macy & 
Flache, 2009). This is especially important in the case of complex adaptive social 
systems, whose stochastic, non-linear behavior can seldom be mathematically trac-
table and cannot be estimated deductively without computer simulation exploring 
various initial conditions and possible input/output paths (Miller & Page, 2009).

Unlike statistical models, which concentrate on relations between aggregate fac-
tors (Bianchi & Squazzoni, 2020), ABM starts from representing individual behav-
ior and ends up exploring aggregate dynamics from agent interaction via computer 
simulation. Social regularities and patterns are neither derived by estimating the 
values of stochastic parameters that would maximize a model’s fitness to observed 
data, nor obtained by assumptions on aggregate properties that do not consider 
individual-level differences (e.g., Hedström & Manzo, 2015; Hedström & Udehn, 
2009). ABM parameters are not estimated a posteriori, they are manipulated a priori 
following an experimental rather than an observational research design 
(Squazzoni, 2012).
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Indeed, instead of being inferred from (or tested against) empirical data, the 
model allows us to explore hypothesized micro-social processes according to this 
Coleman-like connection: (a) initial macro parameter conditions → (b) heteroge-
neous individual behavior → (c) interaction effects → (d) social outcomes (Coleman, 
1990). In line with the so-called ‘analytical sociology’ agenda (Hedström & 
Bearman, 2009; Hedström & Manzo, 2015; Manzo, 2022), ABMs can be viewed as 
generative models ensuring a high degree of internal validity regarding the “genera-
tive sufficient conditions” leading from (a) to (d) via the manipulation of (b) and (c) 
(Epstein, 2006). Unlike statistical models, generative explanations via ABM does 
not require the independence of observations as they aim to explore systemic, inter-
dependent social processes, i.e., specific configurations of (a), (b), and (c) that 
would determine (d). Furthermore, ABM allows us to explore various patterns of 
agent interaction directly within explicitly represented network structures (Macy & 
Flache, 2009).

While traditional equation-based models condense either a ‘representative’, col-
lective agent or a homogenous population into stochastic parameters (e.g., think 
about the modeling tradition in either standard economics or demography), ABM 
explicitly considers a population of heterogeneous, autonomous agents with differ-
ent features and decision-making rules who interact either directly or indirectly 
while being exposed to various environmental stimuli, typically manipulated by the 
model maker (Gilbert, 2008; Macy & Flache, 2009; Macy & Willer, 2002; 
Squazzoni, 2012). By running experiments with human subjects, experimentalists 
aim to test theoretically deduced hypotheses on cause–effect relationships by 
manipulating the occurrence of an explanans (i.e., the treatment) in a randomized 
sample of individuals and studying the control vs. treatment group differences in the 
explanandum. In a similar fashion, an experimenter can use ABM to run several 
instances of a model by manipulating the explanans—i.e., changing the related 
model parameters—and then studying any differences in the simulated outcome. 
Instances could be designed as ‘group-treatment’ policy correlates, artificial agents 
(whose behavior could be empirically inferred from experimental data, if the ABM 
exercise is combined with a behavioral experiment, or theoretically postulated if 
data is not available) would be the correlates of experimental subjects, and their 
group-level reactions would be the outcome measurement. As such, the computer is 
used as an artificial laboratory where theoretically derived hypotheses are tested in 
silico by comparing a baseline (control group) initialization with manipulated sce-
narios (treatments) where the only difference is the introduction of a possible 
explanans (Squazzoni, 2012).

However, this does not constrain ABM to ‘thought experiments’ (Axelrod, 1997). 
Quantitative (e.g., population size, resources, network positions) and qualitative 
parameters (e.g., rules of behavior) related to (a), (b), and (c) can be calibrated 
according to empirical data (i.e., empirical calibration), and aggregate artificial out-
comes (d) can be compared to empirical time series or distributions to adjudicate 
among potential configurations of (a), (b), and (c) those with higher explanatory 
power (i.e., empirical validation) (Boero & Squazzoni, 2005).
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9.3 � Exploring Artificial Policy Scenarios

In this section, we provide some abstract examples from our own research to illus-
trate the ABM approach to policy scenarios. Although there are many examples of 
concrete applications of ABM for policy interventions or design (e.g., Gilbert et al., 
2018), here we have summarized two recent contributions that describe our idea of 
in silico experiments.

9.3.1 � Interventions to Increase Competition or Collaboration 
in Science

Today, academic life is characterized by a “publish or perish” ethos and growing 
competition for funds and academic career (Edwards & Siddhartha, 2017; Grimes 
et al., 2018). While competition is expected to stimulate the quality of publications, 
scientists must also collaborate especially in reviewing manuscripts before publica-
tion to defend robust academic standards of knowledge. This is the important func-
tion of “peer review”: vetting scientific manuscripts submitted by authors for 
publication to a journal by voluntary collaboration of experts guided by journal 
editors. Unfortunately, research has shown that lack of material incentives or a weak 
system of symbolic rewards can undermine peer review, as scientists would reduce 
time and effort in reviewing (typically voluntary and not rewarded), to maximize 
their efforts in new publishable research which funds, prestige, and career depend on.

Suppose that you are a policymaker wanting to test certain possible interventions 
to increase cooperation among scientists, but who also want to ensure that this does 
not compromise the quality of publication. Here are two examples of possible 
research policy interventions. The first represents a policymaker wanting to increase 
quality signals of publication so to induce scientists to compete for excellence, e.g., 
promoting only those scientists who publish in top journals. The second wants to 
reward peer reviewing by introducing an open science policy that would induce 
journals to shift from confidential to open peer review so that the identity of any 
reviewer is public, regardless of the final decisions on manuscripts. This would 
permit reviewers to claim their review as a reward. Note that even if abstract, both 
policy interventions are ‘realistic’: scientists are increasingly exposed to competi-
tive rewards under the dominant rhetoric of excellence and comprehensive evalua-
tion in almost all institutional contexts (e.g., Forsberg et al., 2022). In the second 
case, scientific associations and certain publishers have started to introduce open 
peer review policies as a means to recognize and reward reviewers (Bravo et al., 
2019). Therefore, these examples are abstract (i.e., there is no ‘real policy maker’ 
commissioning a computational test of such policies) but not completely unrealistic 
(i.e., these interventions have been explored more locally and by trial and error).

Suppose we prepare a model to test these possible interventions. Assume a popu-
lation of n agents representing a community of scientists. Assume that scientists are 
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hired by academic organizations that periodically provide them with some minimal 
funding Ri (e.g., laboratory equipment, access to online resources, etc.), allocated 
from a fixed overall amount of resources, R  = ∑iRi. Assume that scientists are 
required to publish manuscripts to get more funds, reputation, prestige, and career, 
but that journals are competitive and so accept only a fixed proportion (P) of submit-
ted manuscripts depending on a quality ranking determined by reviewers. Scientists 
then update their resource share according to their publication record as follows:

	

R
p

p
Ri

i

i
i

�
�

	

Suppose that, at each time step (t), scientists are required to perform two tasks, i.e., 
submitting their manuscripts to journals and reviewing manuscripts submitted by 
others (for the sake of simplicity, let us assume that each manuscript is submitted by 
only one author and is reviewed by only one reviewer; for a similar model, where 
we varied the number of reviewers, see Bianchi & Squazzoni, 2016). Assume that 
time is a scarce resource and both tasks are costly in that scientists need to decide 
how to allocate their resources between these two tasks.

Assume that the quality of submitted manuscripts (Qi
s ) and review reports (Qi

r ) 
linearly depends on the amount of resources allocated by scientists to these two 
tasks, as in:

	 Q e Ri
s

i i= 	

	
Q R Q e Ri

r
i i

s
i i� � � �� �1 ,

	

where ei determines how resources are allocated between submitting and reviewing.
Following Squazzoni and Gandelli (2012, 2013), we assume that reviews may be 

biased, so the actual quality of manuscripts could be only approximated by the 
reviewer depending on the level of resources individually invested by the scientist 
in reviewing (higher investment = more precise evaluation of the quality of manu-
scripts), as follows:

	
Q̂ Qi

s
j i

s� � ,
	

with αj being drawn from a normal distribution N T Qj
r( , min� � � � �1 � � , , where j 

is the reviewer and T∗ is a quality threshold which estimates the minimum amount 
of resources needed by each j to provide a fair review.

Suppose that the quality of manuscripts can be unequivocally quantified so that 
manuscripts can be compared and ranked by journals for publication. Suppose we 
do not consider the role of editors, the presence of multiple journals, the possibility 
of resubmitting rejected manuscripts and other ‘realistic’ conditions. Let us 
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Table 9.1  Pseudo-code of the model (for more detail, see Bianchi et al., 2018)

Input: time t, number of iterations m, set of n agents, R, e, τ, Δe, p
Output: publication bias, average publication quality, top quality
1 initialize t = 0
2 while t < m do
3  �� for all agents i:
4  ��   update Ri

5  ��   ei ← ei + Δe

6
 ��   compute Qi

s

7  �� end for
8  �� while # of reviewers < n/2 do:
9  ��   select random agent i
10  ��   assign i “reviewer” role
11  ��   match i to random j with no “reviewer” role
12

 ��   compute Qi
r

13
 ��   computeQ̂i

s

14  �� end while
15

 �� rank agents by Q̂i
s

16
 �� for all top Pn agents in Q̂i

s ranking do:
17  ��   published? ← true

18  �� end for
19 end while

consider these factors as irrelevant here (see the pseudo-algorithm describing the 
model in Table 9.1).

Let us next run our simulations for a sufficient number of iterations (in our cases, 
m = 1500) to reach a stable outcome equilibrium (in our case, we repeated our simu-
lations at least 100 times for each initialization) and measure the outcomes as fol-
lows: (1) publication bias (i.e., the proportion of incorrectly rejected submissions on 
the total amount of published articles); (2) the average quality of publications; (3) 
average quality of the ten top-quality articles. All measurements are in time steps 
and so can be averaged at the end of each simulation (see the model parameter in 
Table 9.2).

9.3.1.1 � Example 1

Let us now suppose that we want to explore a set of potential interventions to stimu-
late scientists to increase their quality of publication ((2)) while at the same time, 
minimizing publication bias at the system level ((1)). For instance, the policymaker 
could set up rewards or prizes to this purpose but would like to estimate the 
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Table 9.2  Example 1: Model parameters

Parameter Description Value

n Number of scientists 500
e Resources allocated to manuscript production Range: 0–100% 

(uniform distribution)
R Distribution of initial resources Uniform
T* Minimum-quality threshold (the expected amount of 

resources required by each scientist to perform a review)
6

Δe Variation of resources allocated to manuscript production 5%
P Proportion of manuscripts accepted by journals for 

publication in each time step
25%

Adapted from Bianchi et al. (2018)

mediating effect of scientists’ possible reactions. You could create two ‘treatment 
scenarios’: one in which rewards point to strong competition and excellence, e.g., 
scientists are induced to compare their Qi

s  (regardless of whether their submission 
was published or rejected) in the top ten publications (we called it “high competi-
tion”), another one in which rewards point to the average quality (we called it “mini-
mum expected quality”), e.g., scientists use the average quality of below-median 
published articles as a comparison. In both scenarios, suppose that these compari-
sons would determine an individual binary satisfaction value, which would make 
scientists revise their resource allocation decisions between investing more either in 
their own manuscripts or for reviewing other manuscripts.

Now, let us hypothesize three possible decisions made by scientists: (1) always 
selfishly investing in their own publication against peer reviewing, (2) investing 
more in reviewing when their manuscripts have been previously rejected, and (3) 
investing more in reviewing when their manuscripts have been previously pub-
lished. Let us then add a control factor: a level of subjective overconfidence when 
scientists compare the quality of their own manuscripts with current publications by 
others. This can be done by re-running all the same simulation scenarios while dif-
fering for two further conditions: all scenarios initialized with ‘objective’ compari-
son vs. all scenarios with ‘subjective’ quality comparisons. This factorial design 
would imply measuring the same outcomes. Then, let us suppose that you create an 
artificial ‘control group’ where you remove any comparison where scientists would 
follow their allocation strategies without any intervention regarding ‘excellent’ or 
‘minimum expected quality’ signals.

We calculated cumulative moving average values of our outcomes on the last 100 
steps of each iteration and the mean value of outcome measurements for each sce-
nario. Table 9.3 shows the first outcome ((1)), i.e., publication bias, when scientists 
were induced to compete for excellent or looked at minimum expected quality adapt 
their allocation strategies accordingly. Confront the outcomes with the control 
group. Adding rewards for excellence determined high publication bias than ‘mini-
mum expected quality’ signals. However, outcomes vary greatly depending on the 
scientists’ adaptive reactions. Note that reviewing only after being published, e.g., a 
reciprocal behavior, without considering any comparison of quality was detrimental 
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Table 9.3  Evaluation bias (%) in different scenarios. (Mobile mean values over 100 repetitions)

Scientist behavior

Rewards

Control ↓ Minimum expected quality High competition
Comparison 
bias → Objective Overconfidence Objective Overconfidence

Investing only in 
publication

57.61

Reviewing after 
rejection

32.71 40.56 29.47 62.79 58.01

Reviewing after being 
published

66.91 27.86 28.05 30.66 27.04

Adapted from Bianchi et al. (2018)

Table 9.4  Average published quality in different scenarios. (Mobile mean values over 100 
repetitions, then normalized 0–1)

Scientist behavior

Rewards

Control ↓ Minimum expected quality High competition
Comparison 
bias → Objective Overconfidence Objective Overconfidence

Investing only in 
publication

0.60

Reviewing after 
rejection

0.98 0.71 0.85 0.44 0.49

Reviewing after being 
published

0.41 0.00 0.01 1.00 0.36

Adapted from Bianchi et al. (2018)

to the publication bias. Furthermore, counterintuitively, overconfidence had a posi-
tive effect in both scenarios, especially in the high competition scenario (29.47%), 
where publication bias decreased even below the outcome of the ‘control group’ 
scenario (32.71%). Therefore, results suggest that publication bias was higher under 
stronger competition but precise effects depended on various behavioral factors.

If we were to consider the second outcome of interest, however, ((2), i.e., the 
average quality of publications), results did not vary similarly to the first outcome, 
i.e., publication bias. The highest value was achieved when scientists were induced 
to compete for excellence and reciprocated higher investment in reviewing when-
ever previously published (see Table 9.4). This was confirmed when considering the 
quality of the top ten published articles across different scenarios (see Table 9.5). In 
conclusion: (a) policy interventions that increase competitive spirits of scientists 
towards publications could backfire if norms of peer reviewing cannot be enforced; 
(3) even a minimal level of overconfidence can determine positive or negative out-
comes compared to more objective self-evaluation (for detail, see Bianchi 
et al., 2018).
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Table 9.5  Average publication quality of top ten published papers across different institutional 
settings and behavioral strategies. (Mobile mean values over 100 repetitions, then normalized 0–1)

Scientist behavior

Rewards

Control ↓ Minimum expected quality High competition
Comparison 
bias → Objective Overconfidence Objective Overconfidence

Investing only in 
publication

0.51

Reviewing after 
rejection

0.91 0.94 1.00 0.75 0.83

Reviewing after being 
published

0.36 0.01 0.00 0.93 0.34

Adapted from Bianchi et al. (2018)

9.3.1.2 � Example 2

Now let us suppose that we would like to manipulate the peer-review policy adopted 
by journals testing the effect of shifting from confidential to open peer review in 
situations in which scientists would be sensitive to competition and status when 
reviewing others’ manuscripts. Under confidential peer review, authors and review-
ers do not know each other’s identity and so they could just react to their own rejec-
tions by reducing their effort ei in reviewing to punish the system which did not 
favor them. Under open-peer review, author and reviewer identities are disclosed 
and so scientists could reciprocate positive or negative editorial decisions by adapt-
ing Q̂i

s  once they are later matched by the journal. Note that the sensitivity of sci-
entists to this shift of the peer review model has been found in some recent 
‘quasi-experimental’ analysis (e.g., Bravo et al., 2019). Do the positive benefits of 
open peer review come at the price of increasing publication bias, if scientists can 
react to status and competition and use peer review to either help favorable or pun-
ish unfavorable authors who previously reviewed their own manuscripts? Can we 
ideally quantify how much that price would be?

Table 9.6 shows the initial parameters of this model. We tested various possible 
behaviors with a focus on reviewing (e.g., always being fair, being randomly reli-
able, deciding how much to invest in reviewing depending on previous rejection or 
acceptance of their manuscript). Here, we concentrated on comparing different 
reviewers’ reactions to previous experience as authors in two journal settings: (1) 
journals following confidential peer review, in which reviewers invest in reviewing 
whenever previously published or otherwise disinvest, so providing unreliable 
reports; (2) journals following open peer review, in which reviewers and authors’ 
identities are revealed and reviewers reciprocate positive reviews to authors who 
previously favored them when reviewers, and negative reviews to previously unfa-
vorable reviewers.

Figure 9.1 shows the first outcome of interest ((1)), i.e., publication bias, when 
journals follow confidential peer review and reviewers are either always fair, always 
unreliable, or sensitive to previous experiences as authors (e.g., being fair when 
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Table 9.6  Example 2: Model parameters

Parameter Value

Number of scientists 240
Scientists’ initial resources 0
Fixed resource gain (initial endowment of resources for each scientist in each time step) 1
Author bias factor (noise coefficient in the conversion of scientists’ resources into quality 
of manuscript)

0.1

Velocity of best quality approximation (fixed rate at which the quality of submitted 
manuscripts varies according to the increase of the author’s resources)

0.1

Discount factor on resources for unreliable reviews (discount rate on resources when 
scientists perform unreliable reviews)

0.5

Proportion of accepted manuscripts at the end of each time step 25%

Adapted from Bianchi and Squazzoni (2022)

Fig. 9.1  The impact of reviewer behavior on publication bias in confidential peer review. Circles: 
fair; squares: unfair; triangles: reactive. Values averaged over 200 realizations. (Source: Bianchi & 
Squazzoni, 2022)

previously treated fairly, being unfair when previously being treated unfairly). If 
reviewers react to previous experience, the level of bias approximates a random 
situation in which the publication of manuscripts could be decided by editors toss-
ing a coin. Let us use these outcomes as a baseline to compare the effect of reciproc-
ity strategies in the two peer review settings.

Figure 9.2 shows the first outcome of interest ((1)), i.e., publication bias, when 
comparing reciprocal strategies in the two peer review settings. Publication bias 
increased more than 20% under open peer review and added an extra 20% of bias 
compared to a situation where editorial decisions would be random. This would 
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Fig. 9.2  The impact of scientists’ reciprocity strategy on publication bias in confidential vs. open 
peer review. Triangles: indirect reciprocity (confidential peer review); circles: direct reciprocity 
(open peer review). Values averaged over 200 realizations. (Source: Bianchi & Squazzoni, 2022)

suggest that open peer review could be detrimental whenever we assume that 
reviewers are sensitive to cooperation signals. Further results (reported in Bianchi 
& Squazzoni, 2022) indicate that even if reviewers would retaliate only against 
previous reviewers of lower academic status (i.e., with lower resources compared to 
theirs) while being fair in case previous unfavorable reviewers were scientists of 
higher status, the effect on the outcome would differ only minimally (differences 
not higher than 5% on the level of publication bias).

Figure 9.3 shows the effect of reviewer behavior on the second outcome (((2)), 
i.e., the average quality of publications. Open peer review would determine the low-
est quality of publications even when compared to random editorial decisions. Note 
that we tested the sensitivity of these outcomes to the variation of all initial param-
eters and findings were confirmed (see the Supplementary Material of Bianchi & 
Squazzoni, 2022). In conclusion, this exercise would suggest that if practices and 
norms exist that make scientists frame peer review as a signaling game, open peer 
review polices, once adopted globally, could increase publication bias by more than 
20% compared to confidential peer review, thus compromising publication quality. 
Obviously, other computational tests could also be designed with the model by con-
sidering for example other factors, being more nuanced, and considering empiri-
cally grounded behavior. Although a more realistic and empirically calibrated 
parameterization of the model would be important, as suggested by Feliciani et al. 
(2019) in their overview of computer simulation research on peer review, these 
cases here were only aimed to exemplify a method to test policy interventions 
artificially.
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Fig. 9.3  The impact of reviewer behavior on the average quality of published papers under differ-
ent peer review models. In the rectangle: comparison between reciprocity strategy in confidential 
(black) vs. open peer review (white). Values averaged over 200 realizations. (Source: Bianchi & 
Squazzoni, 2022)

9.4 � Conclusions

In this chapter, we have presented ABM as a method to perform computational 
experimental tests on non-linear, complex effects of policy interventions as these 
can determine interaction effects and individual adaptations. This could enlarge the 
toolbox of experimental policy analysists, especially when RCTs cannot be designed 
due to various ethical, political, or economic constraints. In silico tests are also 
required before policy design to explore potential unintended consequences or when 
an understanding of social processes could provide relevant insights to enhance 
comprehensive policy appraisal. In our view, ABM can fruitfully complement, 
enrich, and even substitute—when necessary—more conventional behavioral meth-
ods for public policy.

However, the use of ABM also has important limitations. As discussed by Gilbert 
et al. (2018) in a comprehensive review of practices of computational modeling of 
public policy, deciding the appropriate model resolution requires critical decisions. 
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Besides the hypothetical exercises presented here, where we have proposed abstract 
examples, in concrete contexts, the optimal level of abstraction of a model depends 
on the purpose of modeling and the nature of the system being modeled (Edmonds 
et al., 2019). For instance, during the COVID-19 pandemic, epidemiologists have 
used ABMs to simulate a variety of anti-contagion policies to flatten the curve by 
reaching an appropriate level of resolution on certain parameters (e.g., population 
size). However, they followed empirically implausible assumptions on relevant oth-
ers (e.g., social networks and externalities), which compromised a more compre-
hensive exploration of possible policy interventions while downplaying the 
fundamental role of uncertainty (see Squazzoni et al., 2020 for a critical overview; 
for an example of empirical calibration of networks in epidemiological models, see 
Manzo & van der Rijt, 2020).

This raises two interrelated challenges in the use of ABM for public policy, i.e., 
the use of empirical data to calibrate model parameters via existing or ad hoc data, 
and the heuristic value of model findings to inform policy interventions or policy 
evaluation (Tracy et al., 2018). In this regard, as suggested by Murray, Marshall & 
Buchanan (2021, 1655) in their proposed ‘target trial framework’, whenever com-
bined with the usual experimental framework of behavioral policy, ABM could 
incorporate empirical data on the targeted population (e.g., calibrating salient char-
acteristics of individuals from available data sources) and a detailed and explicit 
specification of the hypothetical trial, while using the in silico experimental nature 
of these models as an ‘artificial world’ “with no ethical, logistical, or financial con-
straints, and in which the exposure of interest is perfectly manipulable by study 
investigators, regardless of whether this is actually feasible or ethical in the real 
world.” This would help to fill the gap between empirical data and unobservable 
variables and inform study design. Furthermore, following Bravo et al. (2012), cali-
brating ABM with results from small-scale pilots, RCTs or well-detailed observa-
tional studies or re-running existing trials in a model, while scaling the characteristics 
of the original target population to populations with other characteristics or testing 
other network structures compared to those originally reproduced in the previous 
study, could help us to increase generalization or perform counterfactual tests of 
policy findings. This would help to assess the dependence of outcomes from contex-
tual details and help us understand how much causal inference exercises on complex 
social behavior require careful examination.

Suggested Readings
Epstein, J.  M. (2006). Generative Social Science: Studies in Agent-Based 

Computational Modeling. Princeton, NJ: Princeton University Press.
Manzo, G. (2022). Agent-Based Models and Causal Inference. Hoboken, NJ: 

Wiley & Sons.
Page, S. E. (2018). The Model Thinker. New York, NY: Basic Books.

Review Questions
	1.	 What are the limitations of RCTs for public policy?
	2.	 What is agent-based modeling?
	3.	 Which are the benefits of using ABM to examine social processes?
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	4.	 Can ABM be informed by empirical data?
	5.	 What are the limitations of ABM as a method to inform policy interventions?

Replication Material
The models have been built in NetLogo. The code is available at the following links:

https://www.comses.net/codebases/6b77a08b-7e60-4f47-9ebb-6a8a2e87f486/
releases/1.0.0/ (Example 1).

https://www.comses.net/codebases/3d99eb9f-ae4f-42d0-8c58-9d28757161c0/
releases/1.0.0/ (Example 2).
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Chapter 10
The Many Threats from Mechanistic 
Heterogeneity That Can Spoil 
Multimethod Research

Markus B. Siewert  and Derek Beach 

Abstract  The combination of cross-case and within-case analysis in Multi-Method 
Research (MMR) designs has gained considerable traction in the social sciences 
over the last decade. One reason for the popularity of MMR is grounded in the idea 
that different methods can complement each other, in the sense that the strengths of 
one method can compensate for the blind spots and weaknesses of another and vice 
versa. In this chapter, we critically address this core premise of MMR with an 
emphasis on the external validity of applying some cross-case method, like standard 
regression or Qualitative Comparative Analysis, in combination with case study 
analysis. After a brief overview of the rationale of MMR, we discuss in detail the 
problem of deriving generalizable claims about mechanisms in research contexts 
that likely exhibit mechanistic heterogeneity. In doing so, we clarify what we mean 
by mechanistic heterogeneity and where researchers should look for potential 
sources of mechanistic heterogeneity. Finally, we propose a strategy for progres-
sively updating our confidence in the external validity of claims about causal mech-
anisms through the strategic selection of cases for within-case analysis based on the 
diversity of the population.

Learning Objectives
By studying this chapter, you should be able to:

•	 Understand the main rationale behind Multi-Method Research in the social 
sciences.

•	 Be aware of different ontological and epistemological assumptions and their 
consequences for conducting multimethod research.

•	 Grasp the concept of mechanistic heterogeneity analytically.
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•	 Critically discuss different sources of causal heterogeneity at the level of mecha-
nisms, and their repercussions for causal inference in multimethod research.

•	 More consciously generate generalization strategies for their own research proj-
ects, and critically examine the external validity of existing multimethod research.

10.1 � Introduction

Over the last decades, multimethod research (MMR) has gained considerable popu-
larity in the analysis of public policy (see Fielding, 2010; Hendren et al., 2018; Wolf, 
2010 for overviews about MMR studies in public policy), echoing a general trend in 
the political and social sciences (seminally, Lieberman, 2005; for up-to-date discus-
sions, see Beach and Kaas 2020; Goertz, 2017; Humphreys & Jacobs, 2015; 
Seawright, 2016). Many texts define MMR as any research design which uses two or 
more methods to analyze the same research topic, often involving cross-case analy-
sis of patterns of association between causes and outcomes and within-case analysis 
of how the causal linkage(s) work (see Creswell & Plano Clark, 2018; Schoonenboom 
& Burke Johnson, 2017; Tashakkori & Teddlie, 2021 for various definitions).

The most common type of MMR in political science involves the combination of 
some form of cross-case analysis, e.g., using regression-based methods (see Chaps. 
4 and 5), or some variant of mediation analysis (see Chap. 6) or Qualitative 
Comparative Analysis (see Chap. 7), and one or several within-case studies using 
methods like congruence analysis or process tracing (see Chap. 8).1 The cross-case 
analysis enables the identification of the net causal effects or invariant association 
between X and Y, i.e., does X make a difference for Y? The within-case analysis, on 
the other hand, focuses on the causal linkage aka mechanism(s), i.e., how does X 
work to bring about Y? The core logic behind this variant of MMR, in a nutshell, is 
that combining methods that allow for different kinds of inferences bears the poten-
tial to use the particular strengths of one technique to cancel out the other’s weak-
nesses, and vice versa (e.g., Beach, 2020, 163; Clarke et  al., 2014, 341; Goertz, 
2017, 5–6; Lieberman, 2005, 436; Weller & Barnes, 2016, 426–27). In doing so, the 
promise of MMR is that its design ultimately yields more robust inferences by shed-
ding light on social phenomena or substantiating our understanding of policy prob-
lems from different analytical perspectives.

The question of whether MMR can deliver on this promise – whether different 
methods can efficiently complement each and strengthen overall causal inferences 

1 In this chapter, we deliberately leave aside the question of MMR using interpretative techniques. 
Irrespective of their many merits, interpretative techniques concentrate on research themes that 
fundamentally differ from the type of causal questions addressed in this chapter. Hence, we remain 
within the broad ontological assumption that causation exists in the form of causal effects/invariant 
associations and causal mechanisms and that they can be examined empirically (see Chap. 2) – a 
thread that connects all contributions in this volume. For recent developments in interpretative 
methods, see Schwartz-Shea and Yanow (2012).
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“because taken on their own each sort of evidence has significant limitations” 
(Clarke et  al., 2014, 341) – has not gone uncontested. In fact, there is a notable 
strand within the methodological literature reflecting upon the notion of mutual 
complementarity in MMR.  The core of this debate deals with whether different 
methods that make different types of causal claims and use different types of evi-
dence can really be merged as seamlessly as is frequently portrayed (Beach and 
Kaas, 2020). Among other things, it has been highlighted that MMR can involve the 
problem of conceptual stretching or might even introduce conceptual incongruity if 
specific causal properties are added/dropped from concepts when moving between 
the cross-case and the within-case level of an analysis (Ahmed & Sil, 2009; Ahram, 
2013). Similarly, while case studies can be used to check for measurement errors or 
to develop context-sensitive indicators (e.g., Seawright, 2016, 50–53), it can be that 
translating within-case observations into comparable cross-case data, and the other 
way around, is neither intuitive nor straightforward (Ahram, 2013; Kuehn & 
Rohlfing, 2009). Finally, it has been frequently mentioned that case studies can be 
used in MMR to check for under- and/or overspecification of the explanatory model 
at the cross-case level (Lieberman, 2005; Seawright, 2016: 67–74). Yet, Rohlfing 
(2008) convincingly shows that model misspecifications can travel between differ-
ent levels of analysis because residuals and effect sizes might point towards the 
wrong cases for further within-case study, hence aggravating the situation, since an 
incorrect model is corroborated by looking at the wrong cases. In short, numerous 
pitfalls can complicate the effective integration of different approaches and methods 
in MMR designs.

This chapter concentrates on another significant problem: How can insights 
about causal mechanisms gained by studying how they work in one case be general-
ized to cases that we have not studied using case studies but look similar at the 
cross-case level? The issue of generalization has so far largely been ignored in the 
political science literature on MMR. As we will show below, generalizing about 
mechanisms is particularly difficult in settings that exhibit mechanistic heterogene-
ity. We define mechanistic heterogeneity as a scenario where multiple different 
mechanisms link the same explanatory factor(s) X to the same outcome Y (Álamos-
Concha et al., 2021; Beach et al., 2019). For instance, we might find out that epis-
temic authorities (aka experts) gained influence over a policy in one case through a 
mechanism involving a process where the experts gained access to decision-makers 
by joining the bureaucracy itself (Löblová, 2018). However, in another case, influ-
ence might have been achieved through other processes, such as experts or lobbies’ 
framing of the debates from the outside.

This form of heterogeneity and complexity at the level of mechanisms is widely 
discussed in the literature on case-based methodology (Beach & Pedersen, 2016, 
2019; Bennett & Checkel, 2015; Blatter & Haverland, 2012; Falleti & Lynch, 2009; 
George & Bennett, 2005; Rohlfing, 2012). However, it is largely neglected in most 
accounts that deal with the integration of cross-case and within-case analysis (but 
see Beach et al., 2019; Goertz, 2017; Weller & Barnes, 2016), which is why we do 
not yet have a good understanding of how to deal with the issue of making cross-
case and within-case analysis communicate in MMR.  To put it simply, the 
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cross-case analysis tells us about differences and similarities at the level of X’s and 
Y’s; in contrast, the within-case analysis tells us about linkages (if any) between X 
and Y. In fact, we are making different types of causal claims, using very different 
types of empirical material (Clarke et al., 2014).

Addressing this question in the context of a volume on causation in policy stud-
ies is important for several reasons. First, we can observe an apparent ‘mechanistic 
turn’ in the social sciences which gradually expands across its subfields, including 
the field of public policy analysis (e.g., Capano et al., 2019; Capano & Howlett, 
2021; Fontaine, 2020; Kay & Baker, 2015; Lindquist & Wellstead, 2019; van der 
Heijden et al., 2019). For instance, Fontaine (2020, 274) stresses that there is an 
emerging consensus on the fact that producing evidence about mechanisms via pro-
cess tracing bears a significant “potential contribution to comparative policy analy-
sis.” Capano and Howlett (2021, 142 italics in the original) go one step further, 
arguing that “[p]olicy-makers [..] need a realistic causal theory about what occurs 
when policy tools are deployed and how it occurs if they want to design something 
that will actually happen more often than not, and to escape the trap of poorly con-
ceived and related tacit knowledge, experience, and heuristics.” Yet, secondly, if we 
accept that producing comprehensive causal explanations requires both robust evi-
dence that a probable cause X is correlated/associated with Y as well as sound evi-
dence for the causal mechanisms linking X and Y, the ability to generalize 
mechanistic claims from one studied case to other cases belonging to the same 
population becomes a significant issue. In one case study, we might have found that 
the linkage worked in one way, but how would we know whether the linkage (if any) 
is similar in other cases if we have not also investigated them? For instance, can we 
assume that a particular strategy used by a political entrepreneur that worked during 
a crisis would work in other situations? Assuming that mechanisms work in similar 
ways in other, non-studied cases is in effect generalizing based on hope instead of 
evidence. If researchers and policymakers need to know what works, how, and 
under what conditions, a well-informed mapping of the underlying mechanisms 
operative within a population of cases is crucial to generalize how X and Y are 
linked in different cases within a population.

The chapter is structured as follows: Section 10.2 outlines the basic ideas behind 
MMR designs, introduces the main templates, and discusses key ontological and 
epistemological differences when combining cross-case and within-case analysis. 
Section 10.3 addresses the problem of mechanistic heterogeneity by illustrating 
what heterogeneity at the level of mechanisms means. After that, Sect. 10.4 presents 
a selected set of potential sources to which researchers should turn to check for 
mechanistic heterogeneity in MMR. In Sect. 10.5, we discuss a stepwise generaliza-
tion strategy that is sensitive to mechanistic heterogeneity and whose primary goal 
is to progressively update the confidence in the external validity of mechanisms by 
gradually expanding the knowledge about how mechanisms work in different (sets 
of) cases. The chapter closes with some final remarks.
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10.2 � Basic Ideas Behind MMR

The main rationale behind combining cross-case and within-case methods in MMR 
is that it allows researchers to make different types of causal inferences (e.g., Beach, 
2020; Beach & Rohlfing, 2018; Goertz, 2017; Lieberman, 2005; Rohlfing & 
Schneider, 2018; Seawright, 2016; Weller & Barnes, 2016). On the one hand, cross-
case analyses are particularly good at identifying cause–effect relationships by 
examining regular associations in the form of controlled experiments, correlations, 
or set-relations across a sample of cases. On the other hand, within-case analyses 
can establish the causal linkages between one or several causes and the respective 
contributions by tracing the underlying causal mechanism(s). By integrating both 
analytic perspectives and using methods in combination to address a shared research 
theme, it is argued that one can strengthen the soundness and robustness of the 
inferences since each mode of analysis has particular strengths that can make up for 
the other’s blind spots (Cartwright, 2011; Clarke et al., 2014; Steel, 2008).

But how does this division of labor work in research practice? The literature on 
MMR has produced numerous taxonomies and typologies of different designs (see 
Bryman, 2006; Creswell & Plano Clark, 2018; Schoonenboom & Burke Johnson, 
2017; Tashakkori & Teddlie, 2021, among others). One common defining element 
is whether the methods are applied in parallel or sequentially. In parallel designs, 
two or more methods are applied simultaneously; in sequential designs, one is used 
after the other. A different feature is whether the parts of an MMR study depend on 
each other or are performed independently. In the former scenario, insights from 
one study inform the data collection and/or analysis of the other; in the latter sce-
nario, data collection and/or analysis are performed separately within each method.

The sequential research strategy is probably the most common in political sci-
ence research. Two variants are typically distinguished (e.g., Beach & Rohlfing, 
2018, 11–18; Lieberman, 2005; Rohlfing, 2008; Rohlfing & Schneider, 2018, 
44–45; Seawright, 2016). In ‘cross-case first/within-case second’ designs, the 
researcher starts with some form of cross-case analysis to identify robust connec-
tions between a (set of) explanatory factor(s) X and an outcome of interest Y. This 
is followed by one or several case studies based on the findings of the first analytic 
step. On the other hand, ‘within-case first/cross-case second’ designs follow the 
opposite logic. Here, the analysis starts at the within-case level to uncover some 
causal connection and/or mechanisms and then continues with the cross-case analy-
sis to explore whether the identified relationship also holds across a population 
of cases.

While one of the original motivations behind the methodological work on MMR 
was to (at least partially) overcome the divide between qualitative and quantitative 
methods, recent debates have again emphasized the ontological and epistemological 
differences between research approaches and the challenges they create for integrat-
ing methods from the different cultures into an (at least somewhat coherent) MMR 
design. At least two types of approaches can be differentiated: variance-based and 
case-based (for the following, see Beach & Kaas, 2020).
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Variance-based approaches to MMR build on a counterfactual understanding of 
causation as developed in the Potential Outcome framework. Counterfactual causa-
tion is defined as the claim that a cause produced an outcome because its absence 
would result in the absence of the outcome, all other things being held equal. 
Without evaluating the difference that a cause can make between the actual and the 
counterfactual, no causal inference is possible. Therefore, the main causal inference 
is established at the cross-case level using controlled comparisons. Put it more 
bluntly, the cross-case method is in the inferential driver’s seat, while the within-
case serves as an adjunct method.2 This does not mean that the within-case study is 
not important. It fulfills crucial functions such as validating measurement, establish-
ing a case’s counterfactual, reconstructing the causal pathways, or searching for 
confounders (Seawright, 2016; Weller & Barnes, 2016). Causal evidence, however, 
lies across cases.

In case-based approaches to MMR, multiple understandings of causation exist 
side-by-side (Baumgartner & Falk, 2019; Beach & Pedersen, 2019; Rohlfing & 
Schneider, 2018). They usually have in common that the inferential workhorse in 
MMR designs is located at the within-case level instead. To establish a causal rela-
tionship, it must be checked whether the identified explanatory factors indeed exert 
some causal power over the outcome in a case, and if so, how exactly the causal 
mechanism plays out (e.g., Beach et al., 2019; Schneider & Rohlfing, 2016, 2019). 
Here, the analysis at the cross-case level plays an adjunct role, e.g., by establishing 
an X/Y relation in the first place, guiding the case selection for the within-case 
study, or mapping the population of cases for further generalization (Box 10.1).

2 It is important to note that there are alternative proposals. For instance, Runhardt (2015, 2021) 
envisages a design where controlled comparisons are used at the within-case level where two or 
more cases are examined to see whether the proposed mechanism made a difference.

(continued)

Box 10.1: The Variance-Based and the Case-Based Approach to MMR

The question of variance-based and case-based approaches to MMR needs to 
be located in the broader discussions within the philosophy of sciences (e.g., 
Cartwright, 2011; Russo & Williamson, 2011) and political science. In this 
sense, it connects to the seminal readings like King et al. (1994), which argued 
in favor of a shared understanding of causal inferences across quantitative and 
qualitative (i.e., empirically oriented case-based methods). This has been 
challenged in recent debates, which (again) points out the ontological and 
epistemological differences between the qualitative and quantitative methods 
(Brady & Collier, 2010). Consequently, there has been a rise of methodologi-
cal guidelines for different MMR designs depending on the research tradition 
in which it is grounded (see Beach & Kaas, 2020 for an overview).

Variance-based approaches to MMR (e.g., Lieberman, 2005; Seawright, 
2016; Weller & Barnes, 2014, 2016), as pointed out in the main text, usually 
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10.3 � The Problem of Mechanistic Heterogeneity for External 
Validity in MMR

Making generalizations about the working of mechanisms from one studied case to 
other cases which are not studied is a crucial problem in the social sciences and 
beyond (e.g., Cartwright, 2011; Khosrowi, 2019; Steel, 2008; Wilde & Parkkinen, 
2019). Knowing how a policy intervention works in one case does not necessarily 
tell us how it would work in other, non-studied cases.

The relevance of this issue is evident in case-based approaches, where the examina-
tion of mechanisms is the main inferential workhorse. But the ability to make generaliz-
able claims about mechanisms is also essential for the variance-based approach. For 
instance, Weller and Barnes (2014, 21) argue that one goal of within-case analysis is “to 
understand substantive relationships at the level of individual cases and to use those 
insights to learn something about the population of cases that feature that substantive 

Box 10.1  (continued)
are grounded in the potential-outcomes framework (aka counterfactual causa-
tion). It applies a top-down perspective where the main goal is to identify 
robust causal effects in a population of cases, or a sample thereof (with ran-
domized controlled trials as a gold standard). This is followed by an assess-
ment at the within-case level of whether the causal relationship holds or not. 
The cross-case analysis using controlled comparisons is the main workhorse 
for causal inference, focusing on difference-making. To align cross-case and 
within-case analysis, variance-based approaches often understand causal 
mechanisms as intervening variables whose difference-making can be 
assessed using controlled comparisons between cases.

For case-based approaches to MMR, the ontological underpinnings are 
varied, relying on regulatory theory (e.g., QCA) or mechanisms (e.g., process 
tracing) (Beach & Rohlfing, 2018; Goertz, 2017; Rohlfing & Schneider, 2018; 
Schneider & Rohlfing, 2016; see also Chaps. 1, 2, 6, and 7). However, what is 
shared by all existing frameworks is that the main causal inference happens at 
the within-case level through case study methods like process tracing. In this 
regard, case-based approaches are bottom-up in their focus on causation as it 
plays out within single cases, after which generalizations might be made to 
other cases. As regards the understanding of causal mechanisms, there is an 
emerging consensus on a productive account of mechanisms – which we also 
subscribe to in this chapter  – that understands mechanisms in the form of 
actors engaging in activities that link a cause and outcome together in a pro-
ductive causal relationship. Nevertheless, epistemological discussions are still 
ongoing about how to identify the working of mechanisms (see also Chaps. 2, 
6 and 8).
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relationship.” Therefore, large-N mediation analysis (see Chap. 6) is often used to study 
mechanisms. However, by studying many cases using variance-based methods, one 
learns about the average causal effects of X (or the intervening variable) on the values of 
Y. An average does not tell us how the linkage works in any given case. In Cartwright’s 
words, average causal effects tell us that “it works somewhere” while leaving us in the 
dark about how it actually works in any given case (Cartwright, 2011).

Once we find a causal mechanism in a studied case using within-case analysis, 
the key question asks whether we can infer that a similar – nota bene: not exactly 
the same (!) – mechanism also connects X and Y in other cases. In other words, how 
do we ensure the external validity of findings about causal mechanisms? The answer 
heavily depends on the degree of causal heterogeneity at the within-case level.

We speak of mechanistic homogeneity if two or more sufficiently similar mecha-
nisms are operative in all the cases that exhibit the same relationship between X and 
Y. Mechanistic heterogeneity, on the other hand, refers to two situations: (1) the 
same X and Y are linked together through different mechanisms (mechanistic equi-
finality), or (2) the same X triggers different mechanisms leading to a different Y 
(mechanistic multifinality) (Beach, 2020; Beach et  al., 2019; Beach & Rohlfing, 
2018; Falleti & Lynch, 2009; George & Bennett, 2005; Gerring, 2010; Goertz, 
2017; Sayer, 2000; Weller & Barnes, 2016).

It is important to note that we do not understand causal mechanisms as chains of 
events, but instead as process-level causal explanations that provide an account of 
what actors are doing. This account explains why the actors’ activities are linked 
together and how they contribute to producing the outcome in the case. Of course, 
these process-level explanations can have varying levels of detail (aka abstraction). 
At the most abstract level are schematic theories that focus on the most critical 
interactions, describing actors and what they are doing in very abstract terms (e.g., 
“a political entrepreneur engages in speeches that attempt to frame a debate”). At 
the other extreme are very detailed, case-specific accounts that use formal nouns to 
describe actors, include many different parts, and where activities are specified in 
great detail (Box 10.2).

Box 10.2: Causal Heterogeneity
The term causal heterogeneity includes a range of phenomena linked to com-
plex causal patterns that can characterize any X/Y relationship. In the statisti-
cal literature, the problem of causal heterogeneity plays a significant role, for 
example, when considering whether different subgroups in a given population 
react differently to a specific treatment, e.g., an administered policy instru-
ment (e.g., Seawright, 2016; Pearl, 2017; Xie, Xie et  al., 2012). Issues of 
causal heterogeneity are also prominent in the context of QCA, where they are 
discussed concerning conjunctural causation, equifinality, and asymmetry 
(Ragin, 2008; see also Chap. 7). Yet, researchers must be aware that causal 
heterogeneity not only pertains to X/Y relations but also to the level of mecha-
nisms (e.g., Beach et al., 2019; Beach & Rohlfing, 2018; Goertz, 2017; Weller 
& Barnes, 2016).
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Fig. 10.1  Abstract examples of mechanistic homogeneity and heterogeneity. Own depiction

Figure 10.1 illustrates the issue of mechanistic homogeneity and heterogeneity 
using causal diagrams in a stylized form for a simple X/Y relationship.
The first scenario displays one variant of mechanistic homogeneity where X and Y 
are connected via the same mechanism (CM1) in both cases. In contrast, the next 
situations all refer to different forms of mechanistic heterogeneity.

In the second scenario, two single but different mechanisms connect the same X 
to the same Y, CM1 in one case and CM2 in another case.3

The situation turns more complex in the third scenario. Here, the same X triggers 
multiple mechanisms in two cases, i.e., mechanistic multifinality, yet there is only 
one mechanism that is shared by both cases (CM1), whereas the two cases differ on 
the second mechanism triggered by X, namely, CM2 versus CM3.

Finally, the fourth scenario shows how different mechanisms might interact with 
each other in different ways across cases – CM1 and CM2 in one case, and CM1, 
CM2, and CM3 in the second case.

These illustrations are, of course, very simple scenarios. More frequently, 
explanatory models do not involve one individual factor, but instead several factors 
X1, X2, X3…, Xi. Here, patterns can become much more complex. Causal mecha-
nisms can work additively or interact with each other, appear in a different sequen-
tial order, show complementary instead of conflicting effects (among others, see 
Beach & Rohlfing, 2018, 18–25; Goertz, 2017, 53–57; Mikkelsen, 2017, 429–34; 
Weller & Barnes, 2016, 433–37 for further illustrations). For instance, X1 and X2 
might trigger two mechanisms, CM1 and CM2, but in one case, this happens simul-
taneously, whereas in other contexts X1 happens before X2, or even that X1 triggers 
CM1, which then leads to X2 triggering CM2 – highlighting temporal or causal 

3 Of course, heterogeneity applies when the whole process is different from case to case, but also 
when parts of it display meaningful diversity.
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ordering as reflections of mechanistic heterogeneity. Another example is discussed 
under the label of ‘masking’ (Clarke et al., 2014; Steel, 2008, 68; see also George & 
Bennett, 2005, 145–47). Masking means that a given X might be linked to the same 
Y through multiple mechanisms with opposite effects on the Y. For instance, a crisis 
might trigger a process where some actors engage in a frantic search for solutions 
and advocate for them. At the same time, the same crisis can push other actors to 
become risk-averse, thereby starting a process of resistance to any change. In the 
case, both processes might be operative, and the outcome is a compromise on some 
modest change that either group did not desire.

10.4 � Sources of Mechanistic Heterogeneity in MMR

When combining cross-case analysis and within-case analysis in MMR to identify 
causal mechanisms and make generalizable claims about them, a crucial problem is 
that the information utilized at the cross-case level is usually uninformative about 
what is going on at the within-case level of mechanisms. Let us revisit the abstract 
example displayed in Fig. 10.1: there is simply no way to establish how exactly the 
mechanisms connecting X and Y play out just by looking at the X/Y relations. 
Against this backdrop, examining how a mechanism works by studying how it 
works within one case and generalizing to other unstudied cases is extremely risky. 
Very different mechanistic scenarios might lurk underneath the same X/Y 
relationship.

Before we sketch out a generalization strategy sensitive to mechanistic heteroge-
neity in the next section, we discuss three primary potential sources of mechanistic 
heterogeneity so that researchers are informed about where to look for heterogene-
ity pitfalls when generalizing mechanistic claims (Box 10.3).

(continued)

Box 10.3: Potential Sources of Mechanistic Heterogeneity
As in cross-case analysis, the assumption of causal homogeneity at the level 
of mechanisms is usually too heroic to be met in the social sciences. We, 
therefore, argue that mechanistic heterogeneity should be the default assump-
tion when conducting within-case analysis in general and MMR in particular 
(Beach et al., 2019). Instead of simply assuming that things work in the same 
way in different cases, researchers should engage in empirical testing of 
whether mechanistic heterogeneity is present in a population if they want to 
avoid making flawed generalizations about the working of causal mechanisms.

A non-exhaustive list of non-exclusive sources of mechanistic heterogene-
ity includes, inter alia, complex concepts and measures based on multiple 
attributes with particular causal properties, qualitative hedges within concepts 
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10.4.1 � Complex Concepts or Measures

The first source of mechanistic heterogeneity is that concepts and measures used at 
the cross-case analysis capture more than one causal property and can trigger mul-
tiple mechanisms. Concepts in the social sciences are usually thought of as multidi-
mensional constructs that have several analytical levels, i.e., attributes and indicators 
(Adcock & Collier, 2001; Goertz, 2020). The literature on concepts and concept 
formation has developed various strategies for systematizing the constitutive prop-
erties of a concept so that they can be fruitfully applied in empirical research.

In the so-called classical approach to concept formation, the constitutive attri-
butes of a concept are individually necessary and jointly sufficient (Goertz, 2020; 
Sartori, 1970). The Venn diagram in Fig.  10.2a illustrates the underlying logic, 
whereby we start from three constitutive attributes (A, B, C). For a case to be cap-
tured by a concept using the classical approach, all three properties must be pres-
ent – i.e., A and B and C. If only one of the three attributes is missing, the given 
social phenomenon does not qualify as a manifestation of the concept.

On the other hand, the family resemblance approach offers an alternative strat-
egy to concept formation. In contrast to the classic approach, concepts only have 
sufficient attributes without a specific feature being individually necessary. Under 
family resemblance, a case is described by a concept when it has at least one of the 
constituent attributes, regardless of which one. The Venn diagram in Fig.  10.2d 
illustrates this approach: the presence of either A or B or C – or any combination of 
the three – is sufficient for the concept to be present (Barrenechea & Castillo, 2019; 
Goertz, 2020).4

Beyond these two standard approaches to concept formation, mixed types can 
also be possible.

In a variant, for instance, there is no single sufficient attribute for having a con-
cept; instead, several conceptual properties must be present, none of which is neces-
sary. To witness, if we require that two out of three attributes need to be present for 

4 In formal terms, the classical approach to concept formation relies on a logical AND combination, 
marked by the Boolean ‘*’; i.e., A*B*C. The family resemblance approach is based on the logical 
OR combination, marked by the Boolean ‘+’, i.e., A+  B  PLUS_SPI  C.  See also Chap. 7 on 
Qualitative Comparative Analysis.

and measures triggering multiple different mechanisms, omitted causal fac-
tors and confounders, varying contexts and differences in scope conditions, 
factors which are identified as redundant or insignificant at the cross-case 
level, but still have a causal impact at the level of mechanisms, or different 
forms of temporal and/or causal dynamics which underlie an X/Y 
relationship.

Box 10.3  (continued)
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Fig. 10.2  Concept formation strategies and conceptual heterogeneity. Own depiction based on 
Barrenechea and Castillo (2019)

a concept, this may mean that the concept describes any case showing A and B, or 
A and C, or B and C, or A and B and C. Figure 10.2c exemplifies this logic based on 
three (‘n’) conceptual attributes out of which at least two (‘m’) must be given for the 
concept to apply.

Another mixed type of the two standards approaches is based on the idea that one 
or more constitutive properties of a concept are necessary, but additional attributes 
are required but not necessary. For example, thinking again of a concept made up of 
three attributes A, B, C, we can envisage that A is necessary, but either B or C must 
be added for a case to be described by the respective concept. As demonstrated in 
Fig. 10.2b, the concept only applies if another attribute is fulfilled in addition to A.5

What does this have to do with mechanistic heterogeneity? The point is that these 
structures can introduce different levels of (causal) heterogeneity into concepts 
(Barrenechea & Castillo, 2019; Beach et  al., 2019; Collier & Mahon Jr, 1993; 
Goertz, 2020). As Figure 10.2a highlights, concepts based on necessary and jointly 
sufficient conditions are very homogeneous since cases are described by this con-
cept only if they show all three attributes. On the other end of the spectrum, con-
cepts that follow a family resemblance logic show a high degree of potential 
heterogeneity because a total of seven characteristic combinations lead to the pres-
ence of the concept – i.e., all combinations except ~A* ~ B* ~ C (Fig. 10.2d). The 
two mixed types can be located in between. Since different attributes have different 
causal properties and can trigger different causal mechanisms, it does not need 
much imagination to envisage that this also leads to mechanistic heterogeneity.

A study by Binder (2015) on the conditions for robust UN interventions in inter-
national conflicts illustrates this. Here, the factor ‘spillover effects’ is conceptual-
ized via three attributes that capture different spillover aspects. The three aspects 
are, first, refugee flows; second, transnationally operating rebel groups; and third, 
other negative effects such as drug traffic, terrorism, and economic downturns. To 
count as a conflict with spillover effect, any of the three factors is sufficient follow-
ing a family resemblance approach. In such a situation, the cases included in the 
cross-cases analysis which are coded as experiencing spillover effects contain 
mechanistic heterogeneity by design: some suffer from only one of these factors, 

5 Formally, this can be expressed by A*(B PLUS_SPI C).
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i.e., refugee flows or transnationally operating rebels or economic downturns, oth-
ers from a combination of two or even all three factors. But the causal mechanisms 
triggered by each attribute are most probably very different even though they all are 
coded as cases of ‘spillover effect’.

In situations like these, we do not know which mechanism is actually present in 
a given case just by looking at the relationship between X (here, spillover effects) 
and Y (here, UN intervention). Hence, we cannot generalize from one case to any 
other since it is unclear whether cases that only show high refugee flows trigger the 
same mechanism(s) as cases with only transnationally operating rebels or all three 
attributes present. At best, we might generalize to cases that share the same configu-
ration of conceptual attributes. But even this is difficult, as we highlight below, since 
there might still be different dynamics at play among cases that share the same 
attributes.

The problem of (causal) heterogeneity pertains to various concept formation 
strategies and complex measures. It also occurs if subtypes are constructed and then 
used in the form of a ranked scale (Collier & Levitsky, 1997; Møller & Skaaning, 
2010). It is inherent to index building which rests on the assumption of homogeneity 
at different levels of the index (Barrenechea & Castillo, 2019). It may also apply to 
lexical scales where the defining attributes are hierarchically arranged so that the 
attribute at the lower level is necessary to the next higher level (Skaaning et al., 2015).

All in all, we should expect that causal heterogeneity, and consequently mecha-
nistic heterogeneity, is pervasive when studying public policy phenomena, espe-
cially against the backdrop of the widespread use of complex concepts in cross-case 
analysis. While this might not be a problem if one is only interested in establishing 
X/Y relations, it becomes a crucial pitfall in MMR if the aim is to generalize the 
insights gained at the within-case level to a larger sample of unstudied cases. Simply 
assuming that causal mechanisms play out in similar ways across all cases would 
not be warranted in this situation.

10.4.2 � Known and Unknown Omitted Conditions

The second source of mechanistic heterogeneity comes from known and/or unknown 
omitted conditions in cross-case analysis. The problem of unknown omitted condi-
tions, i.e., contextual or explanatory factors that are not part of the original model, 
is frequently discussed in the methodological literature as a problem for MMR 
(Kuehn & Rohlfing, 2009; Radaelli & Wagemann, 2018; Seawright, 2016; Weller & 
Barnes, 2016). Known omitted conditions, i.e., factors that are not considered in the 
within-case analysis because they do not make a difference in the cross-case analy-
sis, are less frequently problematized in the literature (but seeÁlamos-Concha et al., 
2021 ; Beach et al., 2019 ; Schneider & Rohlfing, 2019).

Conditions omitted in cross-case analysis can substantially impact the within-
case level as they can introduce additional mechanisms or interact with existing 
mechanisms. The problem is straightforward with factors omitted from explanatory 
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models and is widely discussed, for instance, in the literature as potential confound-
ers (e.g., Goertz, 2017; Radaelli & Wagemann, 2018; Seawright, 2016; Weller & 
Barnes, 2014). Yet, contextual (aka, scope) conditions that are omitted can also play 
an important role because they can impact how mechanisms operate (i.e., Bunge, 
1997; George & Bennett, 2005; Gerring, 2010; Goertz & Mahoney, 2009; Sayer, 
2000). This line of thinking also fits nicely into the context-mechanism-outcome 
(CMO) framework developed by Pawson and Tilley (1997) concerning realistic 
evaluations. In a nutshell, the framework posits that mechanisms underlying any 
cause–effect relationship need to be properly contextualized, and whether they 
work in similar or different ways across varying contexts remains an empirical 
issue. Returning to the above example of spillover effects and the strength of UN 
intervention (Binder, 2015), one question concerning the generalizability from one 
case to another would ask whether the mechanisms differ according to the temporal 
duration of the conflict. For instance, during a protracted conflict, the intensity of 
violence might ebb and flow, and there might be several waves of refugees where 
each wave builds up more and more pressure for international action. A different 
dynamic might be observed during a short but extremely violent conflict. Of course, 
whether this is meaningful for treating mechanisms as different depends on the 
theoretical perspective.

While conditions that are not considered in the analysis can play a crucial role in 
mechanistic heterogeneity and the generalizability of mechanisms across cases, 
they are not the only source. One problem we might think of when integrating 
within-case and cross-case analysis to make generalizations about mechanisms is 
that explanatory factors might turn out as redundant, irrelevant, or insignificant at 
the cross-case level, but still have an important causal role to play at the within-case 
level. This is because, strictly speaking, the level at which causes are operative is 
always within a single case. Therefore, establishing patterns of difference-makers 
using statistical techniques or QCA tells us nothing about what is going on within 
cases. Instead, they only allow us to observe patterns of (in)variation across cases.

For instance, a QCA model might show that condition C is irrelevant since the 
outcome Y appears together with the presence of C (e.g., ABC) and its absence 
(e.g., AB~C). In short, C is not a difference-maker from a cross-case perspective 
(Baumgartner & Falk, 2019; see also Chap. 7). However, once we move down to the 
case level, the presence or absence of C might be causally relevant for the operation 
of the mechanism as it still constitutes an analytically important context in which 
the causal mechanism is embedded (Álamos-Concha et  al., 2021; Beach et  al., 
2019; Schneider & Rohlfing, 2019). The same holds for variables that turn out as 
(in)significant in regression analyses. All that regressions say is that X has, on aver-
age, a particular effect Y, or that it does not; but whether a given factor impacts how 
the mechanism operates within a given case is an entirely different question that can 
only be addressed through means of within-case analysis, as this information cannot 
be derived from the statistical effects (Goertz, 2017; Seawright, 2016; Weller & 
Barnes, 2014).

In sum, issues like context-sensitivity, proper scoping, or omitted factors as a 
source of causal heterogeneity are widely acknowledged in the literature discussing 
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various forms of cross-case and within-case methods. From the perspective of 
MMR and the task of generalizing causal mechanisms, the problem is aggravated 
since researchers need to be aware of the limited homogeneity beneath the effect of 
X on Y and the possibility of multiple mechanisms connecting X and Y across sub-
sets of cases.

10.4.3 � Causal and Temporal Dynamics

A third problem when generalizing insights about the working of mechanisms in 
MMR is that an X/Y relation identified at the cross-case level usually tells us (next 
to) nothing about the underlying causal and/or temporal dynamics. A look at the 
literature on within-case studies and MMR discusses a variety of different dynamics 
that can lurk underneath the same X/Y relationship (Beach & Rohlfing, 2018, 
18–25; Beach et  al., 2019, 125–28; Blatter & Haverland, 2012, 94; Falleti & 
Mahoney, 2015, 217; Goertz, 2017, 123–69; Grzymala-Busse, 2011, 1275; 
Mikkelsen, 2017, 429–34; Weller & Barnes, 2016, 434–35). If unnoticed, they can 
have a tremendous impact on the generalizability of mechanistic claims since the 
researcher would assume that the same patterns are linking X in Y in all cases while, 
in reality, they differ across cases.

One example of mechanistic heterogeneity that can hide behind the same X/Y 
relation is the temporal sequence of conditions and mechanisms. For instance, a 
cross-case analysis based on QCA or standard regression techniques might indicate 
that three factors A, B, C are associated with Y. For illustrational purposes, we use 
the example of large refugee flows, transnationally operating rebel groups, and 
other negative effects such as an increase in drug traffic, terrorism, and economic 
downturns that provoke a robust UN intervention. We can envisage a case where the 
three factors follow a temporal sequence, according to which the rise of transna-
tional rebel groups (B) first causes an increase in refugee flows (A), which then 
leads to economic downturns and other negative consequences (C), which finally 
causes a robust UN humanitarian intervention. Can we now assume that the same 
sequence is present in all cases? This would probably be a pretty heroic assumption, 
since many other sequences can still be plausibly theorized. For instance, it might 
be the case that all three factors appear simultaneously, or the ordering of conditions 
might be different.

Interaction patterns might be another way that mechanistic heterogeneity mani-
fests itself. For instance, mechanisms might work independently versus conjointly 
in different cases. Revisiting the example again, the increase in refugee flows, the 
rise of transnational rebel groups, and negative effects such as an increase in drug 
traffic, terrorism, and economic downturns might each trigger separate causal 
mechanisms through different actors and venues that ultimately lead to UN inter-
ventions. In other words, A leads to Y, B leads to Y, and C leads to Y through three 
independent causal mechanisms CM1, CM2, and CM3. However, in other cases, we 
might find a different situation. One reasonable alternative might be that the three 
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factors do not show an independent effect, but instead work conjointly, so that each 
causal mechanism adds or reinforces each other until the UN decides on a robust 
humanitarian intervention.

It is important to note that these challenges cannot merely be fixed by including 
interaction terms in regressions or using configurational methods like QCA.6 
Regarding the latter, conjunctions in QCA only tell us that two or more conditions 
are jointly associated with an outcome; however, they do not tell us anything about 
the interactions present among the individual conditions within the configuration. 
Yet the same applies to interaction terms in a regression analysis where we learn 
that a factor’s average causal effect depends on the level of another factor; however, 
this contains no information on what dynamics and interplays we should expect at 
the level of mechanisms.

10.5 � Taking Mechanistic Heterogeneity in MMR 
More Seriously

In all the situations described in the previous section, generalizing from one studied 
case to other cases that have not been studied risks making flawed inferences about 
which causal mechanisms are operative in different cases. Strictly speaking, we can 
only know which mechanisms are operative in a given case by investigating that 
case. This means that researchers are confronted with an inherent trade-off when 
establishing the external validity of mechanistic claims: examine all cases within a 
given population at tremendous analytical costs, or make a mechanistic generaliza-
tion based on hope, with no empirical evidence to substantiate it (Khosrowi, 2019). 
The trade-off is of special relevance to public policy, where the complexity of pro-
cesses in different contexts (both across space and time) makes mechanistic hetero-
geneity likely pervasive.

To engage with this inherent trade-off, we propose a generalization strategy that 
pays close attention to mechanistic heterogeneity using a sequential, ‘cross-case 
analysis first/within-case analysis second’ design. Building on the work by Weller 
and Barnes (2014, 2016), we advise engaging in multiple follow-up case studies 
that assess which causal mechanisms are present in strategically selected cases 
within a population, thereby gradually establishing the boundaries of the external 
validity of our mechanistic claims. In situations where we find mechanistic hetero-
geneity, we should map the different causal mechanisms operating in various sub-
sets of the population to clarify why different mechanisms are operative in different 

6 Techniques like mediation analysis, structural equation modeling, or coincidence analysis offer a 
partial remedy by mapping (causal) chains and sequencing factors. However, other aspects, like 
whether the speed of events influences the unfolding of complex dynamics between multiple 
mechanisms, remain open. Additionally, the other sources of mechanistic heterogeneity still 
play a role.
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sub-sets of cases (see Beach et al., 2019, 133–54 for a more detailed discussion) 
(Box 10.4).

After a robust X/Y relationship is identified at the cross-case level via statistical or 
configurational methods, the first step of the proposed generalization strategy starts 
with theoretically unpacking various potential mechanistic explanations. Unpacking 
mechanisms involves disaggregating causal processes into parts composed of actors 
doing things.7 What is necessary at this stage is that researchers make the causal 
logic underlying the linkages in a mechanism explicit. Doing so also sheds light on 
all kinds of factors (causal and contextual) that we might expect to be relevant for 
whether and/or how a given mechanism works. For instance, one pathway might 
include a part where, to table a proposal that frames a debate, the expert needs to be 
a trusted epistemic authority by the policymakers. In fact, by theorizing and empiri-
cally tracing how a mechanism works, we also shed light on the conditions required 
for it to work in a particular way.

7 How to define causal mechanisms is debated within the methodological literature (instead of 
many, see Beach & Pedersen, 2019; Bennett & Checkel, 2015). Although we cannot get into detail, 
the problem of generalization and mechanistic heterogeneity is independent of whether one fol-
lows a productive account or envisages causal mechanisms rather in terms of intervening factors or 
very abstract one-liners.

Box 10.4: Strategy for Testing the Generalizability of Mechanisms 
Under the Assumption of Mechanistic Heterogeneity
The rationale behind the suggested snowballing-outwards procedure is to use 
findings from within-case analysis to revise the knowledge of the boundaries 
in which particular mechanisms are operative and progressively update the 
confidence in the external validity of the mechanistic claims which can and 
which cannot be made.The proposed strategy consists of the six steps, starting 
after the cross-case analysis has produced a robust X/Y relationship:

	 (i)	 Theoretical unpacking of all potential plausible mechanisms that could 
link X and Y.

	(ii)	 Mapping of the potential population of cases.
	(iii)	 Initial process tracing of most-similar with population positive case.
	(iv)	 Second process tracing of the positive case that is as similar to initial 

case as possible.
	(v)	 Gradually probing more dissimilar positive cases, paying close attention 

to potential sources of mechanistic heterogeneity.
	(vi)	 Concluding with a mechanism-focused comparison of the deviant case(s) 

to explore potential necessary factors by tracing the breakdown of the 
mechanism(s) previously identified.
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Of course, throughout the next steps, one should still cast the net widely and be 
open for further evidence about causal mechanisms which have not been hypothe-
sized at this early stage; however, the first step should include a theoretical mapping 
of the most plausible different mechanistic scenarios and the respective settings in 
which they might occur.

In the next step, a cross-case mapping of the potential population of cases is 
undertaken. This involves scoring cases based on values of the explanatory factors 
X and the outcome Y and potential contextual and causal conditions that might 
affect how mechanisms work. Here it is crucial to go beyond the identified X/Y rela-
tions and to include all analytically relevant (causal or contextual) conditions. In 
principle, it should be the goal of this mapping to identify clusters of cases as caus-
ally homogeneous as possible to minimize the a priori risk of mechanistic 
heterogeneity.8

Based on this mapping, we can select a case for tracing the underlying mecha-
nisms between X and Y. At the initial stage, all positive cases that are members of 
the X(s), Y, and the given context are potential candidates for process tracing since 
mechanisms can only be observed in cases where X and Y are present. Ideally, this 
process tracing identifies one or several mechanisms linking X and Y in a given 
context C.

However, it might also be the case that no mechanism is identified in the chosen 
case. Here, we would advise proceeding to another similar case study and checking 
whether there is also no mechanism linking X and Y. If this is the case, the evidence 
points towards a mere correlation. Additionally, it could also be that the process 
tracing reveals one or more contextual factors that impact the working of the 
mechanism(s), but have not been considered so far. These new contextual features 
should then be added to revise the mapping of the cases and define more homoge-
neous subsets.

Based on this initial process tracing of one case, if resources allow it, we should 
conduct a second study of a case that is as similar as possible on as many relevant 
causal and contextual factors with the initially studied case. Finding a similar 
mechanism(s) operative in the second case increases our confidence that the process 
works similarly across cases. This way, we reduce the risk of missing important fac-
tors that might impact how the mechanism works. If, on the other side, we find a 
different (or no) mechanism(s) operative in a similar case, we would need to look 
for omitted conditions that differ between the two cases and which explain the dif-
ference in the underlying mechanism.

The exploration of mechanistic heterogeneity then continues by strategically 
selecting more and more different cases to identify the boundaries within which the 
mechanism operates. When we find different mechanisms operative, we would then 
want to assess what conditions differ between the cases to understand under which 
conditions different mechanisms are operative.

8 To make the mapping compatible with mechanistic explanations when working in variance-based 
designs, qualitative thresholds for all explanatory, contextual factors, or analytical dimensions 
need to be established at which a specific mechanism is expected to trigger.
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This exercise of empirically testing for mechanistic heterogeneity should be 
done with an eye to those sources which seem particularly problematic for the 
research design. For instance, if one of the main explanatory factors is operational-
ized via a complex concept, one should check whether different causal attributes 
impact the unfolding of a mechanism. Similarly, researchers should pay close atten-
tion to potential interactions, sequencing, and other dynamics among mechanisms 
that are hidden behind simple X/Y relationships if there is some theoretical or 
empirical argument that would lead researchers to expect this. In other words, 
instead of assuming that the same causal mechanism is present in all cases showing 
X and Y, we encourage researchers to look beyond the results of the cross-case 
analysis and leverage additional theoretical and empirical insights and probe 
whether the mechanistic homogeneity or heterogeneity is present in their 
MMR design.

10.6 � Concluding Remarks

One reason for the popularity of MMR is that its main objective coalesces with the 
evolving consensus in the social sciences that strong causal explanations require 
evidence of an association between X and Y and evidence for the underlying causal 
mechanisms between X and Y. The main objective of this chapter was to familiarize 
researchers with the notion of mechanistic heterogeneity and the challenges this 
causes when conducting MMR based on some type of cross-case analysis in combi-
nation with some form of within-case method. After discussing some basic logics of 
MMR, we introduced the idea of mechanistic heterogeneity. We highlighted several 
sources that can bring about causal heterogeneity at the mechanism level in MMR 
designs. We contend that mechanistic homogeneity is typical when conducting 
social science research. Starting from the assumption that the social world is char-
acterized by causal complexity, which might be present both at the cross-case level 
and the within-case level, we must pay more attention to mechanistic heterogeneity 
when making generalizations about mechanisms. Otherwise, we risk ending up with 
flawed inferences about the working of causal mechanisms across a sample of cases.9

Assuming causal homogeneity at the level of mechanisms makes MMR designs 
considerably easier. But, as tempting as it might sound, we simply do not know a 
priori whether this assumption is correct in any given MMR design which strives to 
integrate insights derived through within-case studies and results from a cross-case 
analysis. To put it more bluntly, “[...] merely assuming that populations are similar 
at lower levels would amount to an extrapolation based on hope” (Khosrowi, 2019, 
48). Against this backdrop, we call upon researchers to do better than assuming 
mechanistic homogeneity. Instead, we engage in empirically testing the limits to 

9 Looking beyond the social sciences, causal heterogeneity at the level of mechanisms also plays a 
crucial role in the life sciences, as the discussions in Steel (2008) and Wilde and Parkkinen (2019) 
highlight.
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which we can generalize mechanistic claims, transparently map out the presence of 
mechanistic heterogeneity, and establish the proper boundaries for the 
generalization.

The debate about how to achieve this goal is just beginning. We hope that the 
guidelines and insights presented in this chapter help to improve research practices 
and encourage more explicit guidelines on how to address mechanistic heterogene-
ity while deploying different combinations of methods.

Suggested Readings
	1.	 Beach, Derek, and Rasmus Brun Pedersen. 2019. Process-Tracing Methods: 

Foundations and Guidelines. Second Edition. Ann Arbor: University of 
Michigan Press.

	2.	 Beach, Derek, and Ingo Rohlfing. 2018. Integrating Cross-Case Analyses and 
Process Tracing in Set-Theoretic Research: Strategies and Parameters of Debate. 
Sociological Methods & Research 47(1): 3–36.

	3.	 Lieberman, Evan S. 2005. Nested Analysis as a Mixed-Method Strategy for 
Comparative Research. American Political Science Review 99 (03): 435–52.

	4.	 Seawright, Jason. 2016. Multi-Method Social Science: Combining Qualitative 
and Quantitative Tools. Strategies for Social Inquiry. Cambridge: Cambridge 
University Press.

	5.	 Schneider, Carsten Q., and Ingo Rohlfing. 2016. Case Studies Nested in Fuzzy-
Set QCA on Sufficiency: Formalizing Case Selection and Causal Inference. 
Sociological Methods & Research 45 (3): 526–68.

	6.	 Weller, Nicholas, and Jeb Barnes. 2016. Pathway Analysis and the Search for 
Causal Mechanisms. Sociological Methods & Research 45 (3): 424–57.

Review Questions
•	 What are the primary purposes of multimethod research? Can you illustrate the 

main strengths?
•	 What pitfalls and trade-offs come with multimethod research?
•	 How do variance-based and case-based approaches of multimethod 

research differ?
•	 Define mechanistic heterogeneity and homogeneity in your own words. Can you 

give one or two examples of mechanistic heterogeneity from your field of 
research?

•	 Discuss how serious you think the problem of mechanistic heterogeneity is in 
political science? For instance, is it common or only seldom? Does it depend on 
the understanding of the mechanism, or is mechanistic heterogeneity a problem 
irrespective of the existing variants?

•	 Can you illustrate how mechanistic heterogeneity complicates the task of mak-
ing generalizations in multimethod research?

•	 Complex concepts, omitted conditions, and causal/temporal dynamics can be 
seen as major sources for mechanistic heterogeneity when linking cross-case and 
within-case analysis. Can you think of examples from your field of research 
which illustrate the described problems?
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•	 Make a list of advantages and disadvantages that come with the strategy that 
maps and tests the boundaries for generalization in multimethod research. 
Discuss whether the additional efforts justify the proposed gains. Is generalizing 
mechanisms based on hope a better strategy from your perspective?
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Chapter 11
Conclusions. Causality Between Plurality 
and Unity

Alessia Damonte and Fedra Negri

Abstract  The previous chapters convey the image of causal analysis in public pol-
icy and beyond as a fragmented field where research communities seldom learn 
from each other’s findings. This chapter resumes the ontological, epistemological, 
and methodological evidence that causal analysis is characterized by a plurality of 
objects and “incommensurable” interpretations. It also argues that the same evi-
dence pinpoints how this plurality is complementary at every level, and causal struc-
tures raise as the elements that link ontology and methodology and can organize 
heterogeneous findings to improve learning across accounts.

Learning Objectives
After reading this chapter, you will:

•	 Understand the different expectations that history and philosophy cast about plu-
rality and unity in approaching causation.

•	 Appreciate the variety in the ontology, epistemology, and methodology of causal 
analysis.

•	 Recognize causal structures as a possible common ground.

11.1 � Introduction

As Daniel Little pinpointed in Chap. 2 and Leonce Röth and Andrew Bennett elabo-
rated in Chaps. 6 and 8, the social sciences are home to a variety of understandings 
of “causation”—regularity, counterfactual, manipulability/interventionist, mecha-
nistic—that have molded research with their particular definitions, methodological 
commitments, techniques of choice and often a claim of priority over alternatives. 
In Chap. 10, Markus B. Siewert and Derek Beach warned that, notwithstanding the 
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optimistic expectations from the mixed-method quarters, these understandings sel-
dom make research strategies suitable to refine each other’s findings, for each sheds 
its light on the phenomena of interest from a particular height and angle. Therefore, 
causal analysis looks fragmented into discrete approaches, each yielding its piece of 
knowledge that seemingly cannot speak to the others.

This chapter asks whether such fragmentation is unavoidable, undesirable, or 
both. To find its answer, it proceeds in two steps. Section 11.2 introduces two oppo-
site accounts of how science is made. One maintains that fragmentation is an unde-
sirable state of “confusion of tongues” and science can only advance under a 
dominant paradigm pursuing the unification of disciplines by reducing research 
fields “all the way down” to a few fundamental objects. The other considers that the 
independence of the research fields makes reduction unnecessary and the variety of 
research interests makes it highly undesirable; nevertheless, some learning can 
pragmatically happen as for a wanderer that updates her map along the way. Section 
11.3 considers whether the state of the art in causal analysis fits the confusion of 
tongues or the wanderer metaphor along three dimensions—the ontological, the 
epistemic, and the methodological. Section 11.4 concludes that the field is intrinsi-
cally plural in every dimension; however, accounts are complementary, and causal 
structures can offer common points of reference for organizing findings into dove-
tailing portrayals of the “causal elephant.”

11.2 � Two Tales About the Making of Science

A captivating narrative maintains that science is made in the tension between the 
two poles of unity and plurality of research mindsets. However, the story turns in 
different directions depending on one's viewing angle.

11.2.1 � The Viewpoint of the History of Science

The first version builds on the idea that science is a social creation and takes histori-
cal forms (Kunh, 1996; see Wray, 2011; Sankey, 2019). The modern form com-
prises “disciplines”—such as chemistry, biology, or economics. The term denotes 
the distinct body of knowledge that anyone must master before claiming expertise 
on a subject matter. Disciplines are usually maintained by departments and faculties 
within colleges and universities. Their members research the subject matter, con-
tribute to its definition by publishing in specialized outlets, and teach courses to 
train students in the profession. Hence, a discipline arises from the activities of a 
community committed to some “matrix” of tenets, theories, and practices.

As Thomas Kuhn argues, disciplinary matrixes emerge from the scholarly com-
petition to respond to foundational questions—about the ultimate entities of a 
research field, their interactions and organization, and the techniques suitable to 
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know them. A matrix becomes “normal science,” the “paradigm” of reference, or 
the “received view” when it provides a fruitful definition of some fundamental 
knowledge problem. Often, such definition lies in books and articles that become 
“classics” in force of a few crucial features: They offer a successful synthesis of 
previous efforts, restate the legitimate problems of a field, and leave several ques-
tions open for research while establishing the method to tackle them (Kuhn, 1996: 
10). As more people are trained to address its questions with the methods of refer-
ence, old or alternative approaches are “read out of the profession” (ivi:19). As a 
result, the winning matrix dwarfs its competitors and dictates the agenda. In the 
short run, normal science simply neglects those research issues that do “not fit the 
box” (ivi: 24). In the long run, however, the cumulation of intractable “anomalies” 
puts normal science into crisis and opens a stage of “extraordinary research” (ivi: 
90). Possibly, the stage results in a “revolution” and the emergence of a new normal.

In short, this theory assumes that ideas in science follow evolutionary dynamics 
and tend toward a single equilibrium point at a time. This assumption rests less on 
evidence about disciplinary trajectories than on prescriptive considerations. Indeed, 
Kuhn (1996:18) shares with Francis Bacon the tenet that “truth emerges more read-
ily from error than from confusion”: Science under a single dominant paradigm, 
albeit limited in its grasp of the world, is preferable to science under competition. 
As Kuhn argues, competing disciplinary matrices grow “incommensurable” to one 
another. In turn, incommensurability makes disciplines “immature” and incapable 
of relevant advancements.

The obstacle, to Kuhn, is mainly semantic. A competing matrix develops scien-
tific terms that are only meaningful within its original vocabulary, as each term is 
minted to connect some phenomena to particular theories. Thus, theoretical terms 
become idiosyncratic lexical constructs and create a specific classification of the 
subject matter that proves irreducible to any other. Out of the shadow of a dominant 
paradigm, the scientific discourse proceeds in a confusion of tongues, and the debate 
across communities unfolds as zero-sum confrontations.

11.2.2 � The Perspective of the Philosophy of Science

From the viewpoint of the philosophy of science, the divide runs between “monism” 
and “pluralism” instead, and the two are understood as research agendas with alter-
native motivations but of ultimate equal standing.

The monist agenda revolves around the core tenet that “the ultimate aim of a sci-
ence is to establish a single, complete, and comprehensive account of the natural 
world (or the part of the world investigated by the science) based on a single set of 
fundamental principles” (Kellert et al., 2006: x). Corollaries of monism are that, at 
least in principle, such a comprehensive account can describe or explain the world 
faithfully and strategies of inquiry exist that can produce such a comprehensive 
account. Scientific monism then turns reducibility into a yardstick to assess the 
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worth of methods and theories: “methods of inquiry are to be accepted based on 
whether they can yield such an account”; moreover, “individual theories and models 
in science are to be evaluated in large part based on whether they provide (or come 
close to providing) a comprehensive and complete account” (ibidem).

Just the opposite, scientific pluralism advocates for an open mind on the nature 
of causes. It maintains that “there are no definitive arguments for monism and that 
the multiplicity of approaches that presently characterizes many areas of scientific 
investigation does not necessarily constitute a deficiency” (Kellert et al., 2006: x). In 
principle, pluralism does not deny the possibility that an encompassing account of 
the world can be found that effectively allows reducing complexity to the same 
objects “all the way down.” However, it addresses this possibility as an empirical 
matter decided by evidence that may never prove conclusive.

Besides, the coexistence of various accounts across and within disciplines does 
not undermine the standing of the knowledge so yielded. Crucially, pluralism com-
mits to maintaining that theories and methods cannot be rejected as “unscientific” 
on the grounds that they fail to reduce complexity to the same fundamental principle 
(e.g., Fodor, 1974; Longino, 2013). Pluralism finds the reason for incommensurable 
approaches in the diversity of the research questions that can be asked. Considerations 
about the relative autonomy of research fields (e.g., Dupré, 1993), the irrelevance of 
reducibility to the validity of findings (e.g., Suppes, 1978), and the dappled nature 
of the world (e.g., Cartwright, 1999) further reinforced the stance. In short, phenom-
ena might be “too complicated or too indeterminate and our cognitive interests too 
diverse for the monist ideals” (Kellert et al., 2006: xi).

Nevertheless, these considerations do not license the conclusion that literally 
“anything goes.” Paul Feyerabend (1993) minted that dictum as the single pluralist 
principle in a Dadaist mockery of monism—given that, as such, scientific pluralism 
remains skeptical about the possibility of single fundamental principles in doing 
science. Instead, the dictum calls for recognizing that any approach has its limits, 
even when it seems unquestionable. Therefore, science advances when its rules 
make room for a pragmatic conversation between theories and evidence of any 
stripes, as a wanderer that updates her map along the way (ivi: 223 ff).

11.3 � Can We Learn from One Another?

Both the confusion of tongues and the wanderer metaphors fit the causal landscape 
of policy studies and social sciences, leaving the question open of whether prag-
matic learning can happen across the research communities that inhabit them or 
strict incommensurability reigns instead. The issue can be addressed along three 
conventional lines (e.g., Della Porta & Keating, 2008): the ontological, the episte-
mological, and the methodological.
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11.3.1 � Ontological Incommensurability?

Causal ontologies are assumptions about the kinds of ultimate “objects” in a causal 
account. They are crucial as they indicate where causal analysis legitimately “bot-
toms out” while avoiding the chasm of infinite regress or circularity. However, the 
concept has long proven contentious, as it can mean a commitment to dogmas that 
outweigh evidence instead of some ground for meaningful methodological choices 
(e.g., Woodward, 2015; see also Damonte & Negri, Chap. 1).

As discussed by Daniel Little and Andrew Bennett in Chaps. 2 and 8, of the four 
approaches to causality (i.e., regularity, counterfactual, experimental, and mecha-
nistic), the mechanistic stands out as it offers a convenient ultimate ground. Beyond 
evading infinite regress and circularity, mechanisms can prevent causality from 
being reduced to non-causal objects such as constant conjunctions or methodologi-
cal criteria such as counterfactual reasoning. Without some mechanist account of 
the nature of the process that generates the observed outcome, non-causal objects 
are analytically unsatisfying and offer a rough guide to policy choices. As Eric 
Battistin and Marco Bertoni discussed in Chap. 2, the experimental approach aims 
at getting as close as possible to causal identification by manipulating the candidate 
causal factor under controlled conditions. However, the credibility of the findings 
obtained through manipulation stems from the credibility of the assumptions about 
the background whence, as Leonce Röth adds in Chap. 6, unknown confounders can 
operate that bias causal identification. Mechanisms provide testable hypotheses 
about the relevant covariates in the background, hence make sense of regularity and 
circumscribe counterfactual reasoning about the outcome to limited regions of the 
world (e.g., Cartwright et  al., 2020; Glennan, 2017; Illari & Williamson, 2012; 
Machamer et al., 2000; Salmon, 1994).

Scholars from theory-driven areas find mechanistic assumptions easy to embrace 
(e.g., Peters, 2022; Dowding & Miller 2019; Busetti & Dente, 2018). The approach 
is also increasingly accepted within research communities concerned that substan-
tive assumptions may impress biases in conclusions (e.g., Imbens, 2020; Imai et al., 
2013). However, the literature contends that the concept can be elusive and its defi-
nitions at cross purposes (e.g., Mahoney, 2021; Mayntz, 2020; Seawright 2018; 
Goertz, 2017; Gerring, 2011; Pearl, 2000; Holland, 1988; see also Little, Chap. 2, 
Röth, Chap. 6, Bennett, Chap. 8, and Beach & Siewert, Chap. 10 in this volume).

Against this backdrop, Wesley C. Salmon (1987, 1994; Dowe, 2000; see also 
George & Bennett, 2005) provides an encompassing definition that also proves sen-
sitive to the many desiderata in causal ontologies. His starting point is Bertrand 
Russell’s grasp of causality as the seamless “persistence of something” across space 
and time (1948:459). To preserve the emphasis on the factual side of causation 
while improving the ability to distinguish it from non-causal phenomena, Salmon 
borrows from the physical understanding of energy and defines causality as the 
seamless transmission of some non-null “conserved quantity” across space and time.

As such, causality is singular and inheres to entities as different as still paper-
weights, thrown baseballs, sent data packets, enacted policy instruments, or engaged 
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strategic actors. Moreover, it exists in the time window between two distinct altera-
tions, regardless of how narrow that window seems to an observer. In turn, altera-
tions occur at intersections—the concept that allows discriminating between causal 
and non-causal transmission processes.

Following Hans Reichenbach (1956), Salmon identifies three possible altera-
tions that a causal quantity can undergo when intersected:

–– First, it can fork into two or more quantities and transmission processes. An 
observer understands these λ-intersections as a “common cause” giving rise to 
different outcomes.

–– Second, it can merge with one or more preserved quantities into a new one. An 
observer appreciates these γ-intersections as the “joint production” of a single 
outcome from independent causal factors.

–– Third and more conventional, it can exchange its quantity with another causal 
process. The observer recognizes these χ-intersections as chained transmissions 
of the “conserved quantity” to the outcome.

The movement of the conserved quantity across time and places is the “causal 
rope” connecting two intersections; the other way round, intersections are the start-
ing and the ending point of any specific causal rope. Albeit the “causal elephant” 
only arises in force of both, it can be addressed as either the causal line of a con-
served quantity or as its λ, γ, and χ generation structures.

These complementary viewpoints make the mechanistic ontology intrinsically 
plural. Indeed, the transferral of “conserved quantities” and linked intersections 
require different vocabularies to be spoken of. However, each account implies the 
other—which, in principle, makes room for pragmatic matching and learning. 
Whether this happens, however, depends on epistemic conditions.

11.3.2 � Epistemic Incommensurability?

The epistemic level comprises the responses to the question of how we know causa-
tion. The question implies a further broad distinction between “foundationalists” 
(e.g., Christensen, 2004; Kaplan, 1994) and “naturalists” (e.g., Kornblith, 1980; 
Quine, 1969; cfr. Bevir & Kedar, 2008). In the former camp, the main question is 
how we should know causation. The response builds on a vision of scientific episte-
mology as rules and standards deployed to establish cogent evidentiary arguments. 
Scholars in the latter camp instead focus on how it happens that human beings know 
causation. They share an interest in knowledge as individual and social belief sys-
tems shaped by psychological and interactive sense-making processes.

The plurality of the positions within and across camps is mirrored by the many 
interpretations of probability deployed over time. Probability turns our conjectures 
about “something” being such and such instead of anything else into explicit and 
inspectable conditional relationships (e.g., Hàjek, 2007). Such conditionality sup-
ports our efforts to predict or retrodict events and make decisions even when our 
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understanding of their determination is limited, our information is partial, or the 
world appears indeterminate. However, the same conditionality can afford a large 
number of readings. Gillies (2000:1; cfr. Weatherford, 1982; Fine, 1973; Kyburg, 
1970; Salmon, 1966) identifies four major interpretations:

–– Frequentism (e.g., von Mises, 1964; de Laplace, 1820) understands probability 
as the limit of the relative frequency of a kind of event in a long series of trials—
or, in its classic version, as the ratio of the outcome of interest to the possible 
outcomes of a single trial.

–– Propensity (e.g., Suppes, 1987; Popper, 1959) reads probability as the inclination 
to realize an event of interest that inheres in selected repeatable conditions.

–– Logical probability (e.g., Carnap, 1952; Keynes, 1921) gauges the degree of 
belief that any rational mind would entertain about the holding of the relation-
ship between any two or more propositions given specific evidence.

–– Subjective understandings (e.g., De Finetti, 1989; Ramsey, 1964) define proba-
bility as a degree of credence or expectation of some event that single individuals 
can express as consistent betting quotients but that may defy substantive 
rationality.

The logical and the subjective interpretations are often grouped together for their 
shared focus on human heuristics. In contrast, the frequentist and the propensity 
readings both assume that probability is independent of the single individual mind—
which, customarily, qualifies it as “objective.” However, the propensity interpreta-
tion differs from the pure frequentist: The latter limits itself to “collectives,” while 
propensity makes room for the conditional probability of individual events. As a 
consequence, frequentists tend to commit to parametric analysis to preserve accu-
racy in estimates, whereas propensity interpretations usually support non-parametric 
procedures and, as such, trade accuracy for the flexibility afforded by weaker or no 
assumptions about the true distribution of the phenomenon of interest.

The expectation camp, too, is easily associated with non-parametric procedures; 
however, the logical diverges from the subjective interpretation. The former consid-
ers information from rational inference structures as a reason for dismissing a rela-
tionship between sentences, whereas the latter maintains that the only misleading 
probability is the inconsistent one. Thus, logical interpretations are concerned with 
the soundness of the conclusion they license, whereas subjective interpretations 
allow absurd beliefs about the world as long as the relationship between odds 
against and in favor meets the formal axioms of probability calculus.

All in all, these interpretations patently fit the confusion of tongues. Radical 
subjectivist assumptions annoy those who see them as a license to retain fallacies in 
reasoning (e.g., Hájek, 2007). Propensity is in the odor of metaphysical speculation, 
and its causal assumptions imply asymmetries that do not fit the standard axioms of 
probability (e.g., Humphreys, 1985). Deceptive is equally deemed the claim that 
mathematical a priori tenets – such as the Law of Large Numbers and the Central 
Limit Theorem, or the classical Principle of Indifference—confer priority to fre-
quentist probability because they render the ultimate nature of the world (e.g., 
Freedman, 2010). Logical interpretations appear as deductive as the frequentist and, 
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in addition, are charged with  entertaining highly implausible assumptions about 
human heuristics (e.g., van Fraassen, 1989).

However, once again, each interpretation suits a particular research interest and, 
pragmatically, they all can be deployed to illuminate the whole of the “causal ele-
phant” from different angles and heights. However, this does not imply that the 
methods through which different interpretations are deployed can yield dovetailing 
knowledge.

11.3.3 � Methodological Incommensurability?

Ascertaining causation has long been a pluralistic matter and has often provided a 
substitute for ontological assumptions (e.g., Rohlfing & Zuber, 2021, Brady, 2008; 
see Little, Chap. 2). As recalled by Alessia Damonte and Fedra Negri in Chap. 1 and 
elaborated by Daniel Little in Chap. 2, the influential Humean ideal establishes that 
a local causal relationship meets two criteria: First, conditions similar to the 
observed local ones provide the regular antecedents of the outcomes similar to the 
observed one (i.e., regularity); second, had our local conditions been absent, then 
the local outcome should have taken a different magnitude or state than observed 
(i.e., counterfactual). Otherwise said, the methods to ascertain causation can be 
reduced to the alternative between “enumeration” and “elimination” (e.g., Hintikka, 
1968). Notably, each criterion operates at a distinct level:

–– Enumeration turns establishing causation into a quantitative issue—in its basic 
version, it means counting the cases where conditions of the same kind precede 
outcomes of the same kind in the instances of the condition across time and 
contexts.

–– Elimination relies on a qualitative change in the setting of the original situation 
instead—that is, the switch in the state of the condition to switch the state of the 
outcome.

In moving from an observation to the claim that the observation is causal, the two 
criteria have long been recognized with different weights. Enumeration can yield 
lawlike generalizations that capture the robustness of the relationship between kinds 
across contexts but that, as such, cannot support the claim that the relationship has 
a causal standing. Barometer readings and storms, hoaxes and salt dissolving in 
water, birth control pills and biological male pregnancy—all these relationships can 
pass enumeration, but not elimination. The storm would have occurred had the 
barometer been broken, the salt would still have dissolved in water if unhoaxed, and 
Mr. Smith would not have gotten pregnant had he ingested aspirins instead. Thus, 
elimination better supports the intuition that the relationship is effective and that 
Salmon’s “conserved quantity” yielded the outcome. However, Humean local elimi-
nation confronts the long-acknowledged “fundamental problem of causal infer-
ence”: We cannot rerun history to observe the local outcome in the absence or under 
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different local conditions while holding all the other potential confounders constant 
(e.g., Holland & Rubin, 1987; see also Battistin & Bertoni Chap. 3, Negri Chap. 4, 
Ornstein Chap. 5).

11.3.3.1 � Design-Based Solutions

The purposeful selection or construction of observation units as “instances” or 
“cases” enter as suitable methodological solutions to circumvent the fundamental 
problem of causal inference by making counterfactuals somehow observable. John 
Stuart Mill (1843) famously systematized the practices and knowledge of the time 
into two primary designs plus three elaborations. The two basic designs build on the 
Humean standards as they proceed:

	1.	 By agreement: The condition and the outcome stand in a causal relationship if 
two or more instances of the outcome are dissimilar in every relevant feature 
except the condition—or two or more instances of the condition are dissimilar in 
every relevant feature except the outcome.

	2.	 By difference: The condition and the outcome stand in a causal relationship if 
two cases that are similar in every relevant feature except the condition also dif-
fer by the outcome.

The three further elaborations state that:

	3.	 Joint agreement and difference, or indirect difference: A condition and one out-
come stand in a causal relationship when either the presence of both or the 
absence of both is the only common feature of matching groups composed of 
dissimilar instances.

	4.	 Residues: If we know that a set of conditions yields a certain quantity of the 
outcome in a group of instances, and in a matching group we know that there is 
the same set of conditions plus one and one only, then the additional part of the 
outcome can be ascribed to that further condition.

	5.	 Concomitant variations: If two phenomena vary in tandem, they are connected 
by some “fact of causation.”

Of the five canons, the latter only suits continuous-valued phenomena—in all the 
remaining designs, phenomena are units’ binary qualities. Noticeably, the method 
of concomitant variations also stands out as it cannot establish that the relationship 
is causal in itself—only that it suggests some causal “fact” (see Negri, Chap. 4).

The other designs are deemed more conclusive as they rely on selected combina-
tions of qualitative diversity in backgrounds, outcomes, and conditions to dismiss 
the hypothesis that the conditions in the background are relevant to the relationship 
of interest (agreement) or that the relationship includes causally irrelevant elements 
(direct difference, indirect difference, and residues). Of the two threats, Mill main-
tained the latter is more harmful to the standing of the claim that the relationship is 
causal, which makes difference-based designs more conclusive. Agreement 
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remained the design of reference for studies where the assumptions of the most 
similar background could prove harder to attain; its double deployment as the indi-
rect method of difference was offered as a strategy to license more credible 
conclusions.

With a grain of salt, the reasoning behind these canons has been standing the test 
of time. While comparative strategies seldom made a secret of their debt toward 
indirect difference as their design of reference (e.g., Mahoney, 2021, also see 
Damonte Chap. 7), it is also hard not to notice how the estimation of the effect in 
Randomized Controlled Trials shares the rationale of Mill’s residues. The same 
holds for the weaknesses that Mill himself recognized. Design-based inferences can 
license claims that a relationship is causal but cannot ascertain its direction, absent 
further assumptions and information. Moreover, “causes” can prove:

–– Plural, as the same outcome can be “overdetermined”—which raises causal het-
erogeneity issues often hard to disentangle (see Beach & Siewert, Chap. 10). The 
same outcome can follow from alternative conditions and processes: For instance, 
emission trading and environmental regulation can both compel a reduction of 
carbon emissions. But it may also be that different processes yield the same out-
come under the same conditions: For instance, individuals may comply with the 
same rule due to sheer calculations of advantages and disadvantages of non-
compliance, loyalty toward the government or deference toward authority, or the 
persuasion that it is the right thing to do—in different mixes, but all at once (e.g., 
Schneider & Ingram, 1990).

–– Composite, as a causal factor can comprise different components. Moreover, 
composition comes in two flavors, as it can follow:

• �A physical rationale and result from the algebraic sum of its components 
pointing in different directions, as in the composition of forces. For instance, 
someone’s calculation about compliance may depend on their preferences 
for noncompliance and information on how likely the penalty is applied 
(e.g., Klepper & Nagin, 1989). Or it may be that some catch-22 regulations 
made the original decision to comply impossible to pursue.

• �A chemical rationale and result from interactions raising a qualitatively dif-
ferent outcome. For instance, the individual decision to not comply may 
prove perfectly rational from the individual perspective in the short term, yet 
turn into a tragedy when the decision spoils a common good and is made 
under an institutional design that allows opportunism to spill over 
(Ostrom, 2009).

To prove that the antecedent has some causal import, difference-based designs 
have to dismiss plurality and composition as background “noise” or part of some 
“ceteris paribus” clause. However, without knowing how and under which condi-
tions the causal connection holds, the conclusions are possibly inaccurate as their 
assumptions about the comparability of instances may not hold (e.g., Dunning et al., 
2019; Trampush & Palier, 2016; Morgan & Winship, 2015; Cartwright & Hardie, 
2012; Imai et al., 2011; Salmon, 1990; Campbell & Stanley, 1963).
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11.3.3.2 � Model-Based Solutions

The increasing attention to causal models responds to the need for testable struc-
tural assumptions. It revives the factual side of causal analysis and revolves around 
a few options, all resonating with Mill’s intuition of plural and composite factors but 
seldom corresponding perfectly.

For instance, Patricia L. Kendall and Paul F. Lazarsfeld (1950; see also Morgan 
& Winship, 2015) introduce structures to “elaborate” a correlation of interest and so 
improve its credibility. These structures emerge by stratifying the relationship 
between X and Y by a multi-value test factor T. Thus, T “interprets” the relationship 
if it occurs after X but before Y, as in physical composition. Instead, T “explains 
away” the relationship if it occurs before X and Y—a relationship that Mill would 
classify as a “fact of causation” without an autonomous shape. The further elabora-
tion “specifies” the relationship by considering the circumstances that affect the 
partial relationship between X and Y within each stratum of T. Morgan and Winship 
(2015) note that specification implies an intransitive relationship of T with either X 
or Y, which may resonate with Mill’s chemical composition (with X) or plurality 
(with Y).

Causal structures also are the crux of Pearl (2000; see also Röth, Chap. 6). His 
approach, too, considers these structures as the solution to the problem of identifica-
tion. The causal standing of a relationship always builds on three terms—the alleged 
causal factor X, the outcome factor Y, and the additional term Z—arranged in three 
fundamental shapes and visualized as directed acyclic graphs—the “chain,” the 
“fork,” and the “collider.” In the chain, Z is the mediator between X and Y; in the 
fork, it is the common cause of X and Y; in the collider, it is the effect of Y and, 
independently, of X. Then, the chain corresponds with Mill’s physical composition 
and the collider with Mill’s plurality. In Mill’s terms, Pearl’s fork again is a “fact of 
causation.” Mill’s chemical composition, instead, is discussed as the problem of 
identifying causal intransitivity in chained structural models (e.g., Halpern, 2016; 
von Sydow et al., 2016; Hitchcock, 2001).

Albeit the confusion of tongues seems to reign again among model-based strate-
gies, here the translation problem does not seem to imply real incommensurabil-
ity—just blind spots and labeling issues.

11.4 � Wrapping Up and Looking Ahead

This chapter asked whether the different techniques in causal analysis can learn 
from each other or incommensurability rules instead. The portrayals sketched above 
suggest that incommensurability hides many complementarities between interests 
in processes or intersections and between “objective” and “subjective” interpreta-
tions of probability. However, interests and interpretations cannot dovetail unless 
they build on some common ground. Such possible common ground consists of 
causal structures.
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On the one hand, causal structures arise threats to the identification of the effect 
of a single factor that designs aim to keep at bay; on the other, they offer the scaf-
folding for testable models of how and why the effect occurs. Moreover, causal 
structures connect methodologies with ontological assumptions – albeit far from 
perfectly so, as summarized in Table 11.1.

Table 11.1 highlights how ontological and methodological viewpoints shed their 
unique blind spots on structural alternatives. Mill does not consider the common 
cause as a proper causal structure, for it raises the spurious correlation that enu-
merative strategies mistake for causal, while Reichenbach and Salmon seemingly 
disregard structures that could be labeled “disjoint” as they depend on alternative 
processes, thus suggesting an analytical focus on one “conserved quantity” at a 
time. In turn, Pearl’s graphs do not identify Mill’s chemical composition as a dis-
tinct shape—possibly treating it as a path in a fork or a version of the chain structure 
and as a matter of the debate on how to identify actual instances of intransitive 
causation from sheer dependence. Last, Kendall and Lazarsfeld develop their typol-
ogy as explorations of facts of causation.

Beyond the differences in standing and usage, these structures promise to offer 
the terrain where otherwise diverse research strategies can trade their findings, pro-
vided that they acknowledge the peculiarities of each other’s language. Indeed, ide-
ally, structural assumptions can accommodate results generated with different 
grammar and syntax rules while addressing the same policy concern. Frequentist 
probability can yield robust estimates of some effect of interest of Salmon’s “con-
served quantity” and, hence, support decisions on whether the treatment is worth the 
policy effort. Propensity probability can assess Salmon’s intersection or 
Reichenbach’s reference class to yield more fine-graded estimates of the effect in 
selected subpopulations. The logical probability can establish whether a reference 
class makes a sound singular account and afford the ex-post evaluation of interven-
tions while improving forecasting. Subjective probability narrows on individual 
expectations and exposes the heuristics beneath our decisions as policytakers and 
policymakers—which can only be evaluated in light of knowledge and assumptions 
about logical reasoning and “objective” evidence.

Strategies and techniques create families that can be accommodated into a single 
low-dimensional space only at the cost of inviting outraged objections. 
Nevertheless, we are positive that the efforts of the next generation of eclectic causal 
analyses to elucidate causal structures can contribute to building more integrated 
multidimensional maps of crucial policy, political, and social phenomena.

Table 11.1  Causal structures

Graph Reichenbach & Salmon Mill Kendall & Lazarsfeld Pearl

X → Z → Y χ-Transmission Physical composition Interpretation Chain
Z ∗ X → Y γ-Joint production Chemical composition (X-)Specification Fork path

X ← Z → Y λ-Common cause Fact of causation Explanation (away) Fork
X → Z ← Y Disjoint production Plurality (Y-)Specification Collider

Source: own elaboration. References in the main text
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